
Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II

© Harald Räcke 267/443

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 267/443

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 267/443

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 268/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 13.1 Deterministic Rounding

© Harald Räcke 269/443

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270/443

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi

≤
k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270/443

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270/443

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270/443

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 13.1 Deterministic Rounding

© Harald Räcke 270/443

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u
∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 13.2 Rounding the Dual

© Harald Räcke 271/443

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u
∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 13.2 Rounding the Dual

© Harald Räcke 271/443

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u
∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 13.2 Rounding the Dual

© Harald Räcke 271/443

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu = wi

EADS II 13.2 Rounding the Dual

© Harald Räcke 272/443

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273/443

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273/443

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273/443

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273/443

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 13.2 Rounding the Dual

© Harald Räcke 273/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi

=
∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

EADS II 13.2 Rounding the Dual

© Harald Räcke 274/443

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275/443

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275/443

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275/443

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275/443

Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

EADS II 13.2 Rounding the Dual

© Harald Räcke 275/443

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276/443

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276/443

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276/443

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276/443

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 13.3 Primal Dual Technique

© Harald Räcke 276/443

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← �
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yi until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}

EADS II 13.3 Primal Dual Technique

© Harald Räcke 277/443

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.

EADS II 13.4 Greedy

© Harald Räcke 278/443

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a1, . . . , ak and b1, . . . , bk then

min
i

ai
bi
≤
∑
i ai∑
i bi

≤max
i

ai
bi

EADS II 13.4 Greedy

© Harald Räcke 279/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 13.4 Greedy

© Harald Räcke 280/443

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

EADS II 13.4 Greedy

© Harald Räcke 281/443

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

EADS II 13.4 Greedy

© Harald Räcke 281/443

Technique 4: The Greedy Algorithm

∑
j∈I
wj

≤
s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282/443

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282/443

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282/443

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282/443

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

EADS II 13.4 Greedy

© Harald Räcke 282/443

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 13.5 Randomized Rounding

© Harald Räcke 283/443

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 13.5 Randomized Rounding

© Harald Räcke 283/443

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 13.5 Randomized Rounding

© Harald Räcke 283/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj)

≤
∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj

≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 13.5 Randomized Rounding

© Harald Räcke 284/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds]

≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.

EADS II 13.5 Randomized Rounding

© Harald Räcke 285/443

Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .

EADS II 13.5 Randomized Rounding

© Harald Räcke 286/443

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287/443

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost]

≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287/443

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α

= O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287/443

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287/443

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 287/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[sucess]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 13.5 Randomized Rounding

© Harald Räcke 288/443

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

EADS II 13.5 Randomized Rounding

© Harald Räcke 289/443

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

EADS II 13.5 Randomized Rounding

© Harald Räcke 289/443

Techniques:

ñ Deterministic Rounding

ñ Rounding of the Dual

ñ Primal Dual

ñ Greedy

ñ Randomized Rounding

ñ Local Search

ñ Rounding the Data + Dynamic Programming

EADS II 13.5 Randomized Rounding

© Harald Räcke 290/443

	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

