Part Il

Linear Programming

T

EADS Il
©Harald Racke



Brewery Problem

Brewery brews ale and beer.

» Production limited by supply of corn, hops and barley malt
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Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of
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Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of

resources
Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?

> only brew ale: 34 barrels of ale
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
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Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€

> only brew beer: 32 barrels of beer
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Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) ©
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
> only brew beer: 32 barrels of beer = 736€
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Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) ©
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
> only brew beer: 32 barrels of beer = 736€

» 7.5 barrels ale, 29.5 barrels beer
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776 €
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776 €

v

12 barrels ale, 28 barrels beer
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Brewery Problem

\4

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
> only brew beer: 32 barrels of beer = 736€
7.5 barrels ale, 29.5 barrels beer = 776 €
12 barrels ale, 28 barrels beer = 800€
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Brewery Problem

Linear Program
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.
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Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
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Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
» Make sure that no constraints (due to limited supply) are
violated.
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

» Choose the variables in such a way that the objective
function (profit) is maximized.

» Make sure that no constraints (due to limited supply) are

violated.
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0
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Standard Form LPs

LP in standard form:
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Standard Form LPs

LP in standard form:

> input: numbers a;j, cj, b;
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Standard Form LPs

LP in standard form:
> input: numbers a;j, cj, b;

> output: numbers x;
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Standard Form LPs

LP in standard form:
> input: numbers a;j, cj, b;
> output: numbers x;

» n = #decision variables, m = #constraints
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Standard Form LPs

LP in standard form:
> input: numbers a;j, cj, b;
> output: numbers x;
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
inequalities
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Standard Form LPs

LP in standard form:
> input: numbers a;j, cj, b;
> output: numbers x;
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
inequalities

n
max Z Cij
J=1

n
s.t. Zaijxj = b l<i<m
Jj=1
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Standard Form LPs

LP in standard form:

> input: numbers a;j, cj, b;

> output: numbers x;

» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear

inequalities

n
max Z Cij
J=1

©Harald Racke

max clx
n
. s.t. Ax =
X = <i<
st > aijx; bi 1<i<m x =
Jj=1
xj =2 0 1<j=<n
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Standard Form LPs

Original LP
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0
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Standard Form LPs

Original LP
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form
Add a slack variable to every constraint.

max 13a + 23b

s.t. 5a + 15b + s =480
4da + 4b + Sp =160
35a + 20b + s, =1190
a b , sc , sn , Sm =0
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0

min clx
s.t. Ax
X

\%
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Standard Form LPs

There are different standard forms:

standard form

max cix
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min clx
s.t. Ax
X

‘m EADS Il 3 Introduction
©Harald Racke



Standard Form LPs

There are different standard forms:

standard form

max cix
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min cix
s.t. Ax =
X =
standard
minimization form
min cix
s.t. Ax =
X =
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

-3b+5c+s=1
a—3b+5c312=a 3 SCts 2
s=>0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

-3b+5c+s=12
a—3b+5c512=a 3 SCts
s=>0

» greater or equal to equality:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

-3b+5c+s=12
a—3b+5c512=a 3 SCts
s=>0

» greater or equal to equality:

a-3b+5c—-—s5s=12

a-3b+5c=12 = ¢

%
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

-3b+5c+s=12
a—3b+5c512=a 3 SCts
s=>0

» greater or equal to equality:

a-3b+5c—-—s5s=12

a-3b+5c=12 = ¢

%
]

> min to max:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

-3b+5c+s=12
a—3b+5c512=a 3 s
s=0
» greater or equal to equality:
—-3b+5c—-s5s=12
a-3b+5c=12 = ¢ €=
s=0

> min to max:

mina — 3b +5¢ = max-a + 3b — 5¢

‘m EADS Il 3 Introduction =]
©Harald Racke



Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b +5c

a-3b+5c=12 = a4 3b—5e
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b +5c

a-3b+5c=12 = a4 3b—5e

» equality to greater or equal:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3b+5c <12
a-3b+5¢c=12 = a4 3b—5c < 17
» equality to greater or equal:
a-3b+5c =12
a-3b+5c=12 = a4 3h—5c > 12
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3b+5c <12
a-3b+5c=12 = A +3b—5c < 17
» equality to greater or equal:
a-3b+5c =12
a-3b+5c=12 = a4 3h—5c > 12

> unrestricted to nonnegative:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3b+5c <12
a-3b+5c=12 = A +3b—5c < 17
» equality to greater or equal:
a-3b+5c =12
a-3b+5c=12 = a4 3h—5c > 12

> unrestricted to nonnegative:

x unrestricted = x=x"-x",x7T=20,x" =0
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Standard Form LPs

Observations:

» a linear program does not contain x?2, cos(x), etc.
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Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor
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Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

» for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of
ordinary constraints; this is of course not possible for the
standard form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?
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Fundamental Questions
Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist

xeQ"st. Ax=b, x>0, clx>=x?

Questions:
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?

Questions:
> |s LP in NP?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?

Questions:
> |s LP in NP?
» Is LP in co-NP?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b, x>0, clx>=x?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:
» n number of variables, m constraints, L number of bits to
encode the input
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Geometry of Linear Programming

beer b
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beer b

5a +15b <480
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Geometry of Linear Programming

beer b

35a +20b < 1190

5a+ 15b < 480
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Geometry of Linear Programming

beer b

35a +20b < 1190

4a +4b < 160

5a+ 15b < 480
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Geometry of Linear Programming

beer b

35a +20b < 1190

4a +4b < 160
5a+ 15b < 480 \\
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming

beer b

Regardless of the objective function an
optimum solution occurs at a vertex
(Ecke).

\
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Convex Sets

Aset S c Ris convexifforallx,y eSalsoAx+(1-A)yeS
forall0 <A < 1.
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Convex Sets

Aset S c Ris convexifforallx,y eSalsoAx+(1-A)yeS
forall0 <A < 1.

A point in x € § that can’t be written as a convex combination of
two other points in the set is called a vertex.
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.

» A point x € P is called a feasible point (glltige Losung).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.

» A point x € P is called a feasible point (glltige Losung).

» If P + ( then the LP is called feasible (erfullbar).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).

» An LP is bounded (beschrankt) if it is feasible and
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Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).
» An LPis bounded (beschrankt) if it is feasible and
» ctx < oo for all x € P (for maximization problems)

T
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Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).
» An LP is bounded (beschrankt) if it is feasible and

» ctx < oo for all x € P (for maximization problems)
» ¢tx > —oo for all x € P (for minimization problems)

T
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Observation
The feasible region of an LP is a convex set.
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Observation
The feasible region of an LP is a convex set.

Proof
intersections of convex sets are convex...
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Convex Sets

Theorem 2
If there exists an optimal solution to an LP then there exists an
optimum solution that is a vertex.
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Convex Sets

Theorem 2

If there exists an optimal solution to an LP then there exists an
optimum solution that is a vertex.

Proof

» suppose x is optimal solution that is not a vertex
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Convex Sets

Theorem 2

If there exists an optimal solution to an LP then there exists an
optimum solution that is a vertex.

Proof

» suppose x is optimal solution that is not a vertex

» there exists direction d = O suchthatx +d € P
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Convex Sets

Theorem 2
If there exists an optimal solution to an LP then there exists an

optimum solution that is a vertex.

Proof
» suppose x is optimal solution that is not a vertex
» there exists direction d + 0 suchthat x +d € P
» Ad = 0 because A(x +d) =b

‘m EADS Il 3 Introduction =] =
©Harald Racke



Convex Sets

Theorem 2
If there exists an optimal solution to an LP then there exists an

optimum solution that is a vertex.

Proof
» suppose x is optimal solution that is not a vertex
> there exists direction d + O suchthatx +d € P
» Ad =0 because A(x £d) =b
» Wlog. assume ctd > 0 (by taking either d or —d)
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Convex Sets

Theorem 2
If there exists an optimal solution to an LP then there exists an
optimum solution that is a vertex.

Proof
» suppose x is optimal solution that is not a vertex
> there exists direction d + O suchthatx +d € P
Ad =0 because A(x £d) =b
» Wlog. assume ctd > 0 (by taking either d or —d)
Consider x + Ad, A >0

v

v

‘m EADS Il 3 Introduction =]
©Harald Racke



Convex Sets
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Convex Sets

Case 1. [3js.t. d; < 0]

©Harald Racke

3 Introduction



Convex Sets

Case 1. [3js.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A’d) =band x +A’d =0
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A’d) =band x +A’d =0

» x + A’d has one more zero-component (dy = 0 for x; = 0 as
x+deP)
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A’d) =band x +A’d =0

» x + A’d has one more zero-component (dy = 0 for x; = 0 as
x+deP)

» clx’ =ct(x+A'd) =ctx +Acld = ctx
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A’d) =band x +A’d =0

» x + A’d has one more zero-component (dy = 0 for x; = 0 as
x+deP)

» clx’ =ct(x+A'd) =ctx +Acld = ctx

Case 2. [d; = O for all j and ctd > 0]
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’d) =band x + A’d = 0
» x + A’d has one more zero-component (dy = 0 for x; = 0 as
x+deP)
» clx' =ct(x+A'd) =ctx +A'ctd = ctx

Case 2. [d; = O for all j and ctd > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=0
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Convex Sets

Case 1. [3j s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’d) =band x + A’d = 0
» x + A’d has one more zero-component (dy = 0 for x; = 0 as
x+deP)
» clx' =ct(x+A'd) =ctx +A'ctd = ctx

Case 2. [d; = O for all j and ctd > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=0
» as A — oo, cl(x +Ad) — » as ctd > 0
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Algebraic View

beer b

A vertex in R is uniquely defined by d
linearly independent equations.

A
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Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.
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Notation

Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.

Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is a vertex iff Ag has linearly independent columns.
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Theorem 3
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.
Then x is a vertex iff Ag has linearly independent columns.
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (<)

> assume Xx is not a vertex
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (<)
» assume X is not a vertex

» there exists directiond s.t. x +d € P
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ap has linearly independent columns.

Proof (<)

» assume X is not a vertex
» there exists directiond s.t. x +d € P

» Ad =0 because A(x +d) =b
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ap has linearly independent columns.

Proof (<)
> assume x is not a vertex
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b
» define B = {j | d; + 0}
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ap has linearly independent columns.

Proof (<)
> assume x is not a vertex
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B’ = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ap has linearly independent columns.

Proof (<)
> assume x is not a vertex
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B’ = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v

v

dj=0forall jwithx; >0asx+d =0
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is a vertex iff Ap has linearly independent columns.

Proof (<)

>

|

>

assume x is not a vertex

there exists direction d s.t. x +d € P

Ad =0 because A(x £d) =b

define B" = {j | dj # 0}

Ap' has linearly dependent columns as Ad =0
dj=0forall jwithx; >0asx+d =0

Hence, B’ < B, Ap’ is sub-matrix of Ap
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is a vertex iff Ag has linearly independent columns.

Proof (=)
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns
» there exists d = 0 such that Agd =0
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
> there exists d # 0 such that Agd =0
» extend d to R" by adding 0-components
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
> there exists d # 0 such that Agd =0
» extend d to R" by adding 0-components

» now, Ad = 0 and d; = 0 whenever x; = 0
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B={j | xj > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)

>

>

>

assume Ap has linearly dependent columns
there exists d # 0 such that Agd =0
extend d to R™ by adding 0-components
now, Ad = 0 and d; = 0 whenever x; = 0

for sufficiently small A we have x + Ad € P
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Theorem 3

LetP = {x | Ax = b,x = 0}. For x € P, define B={j | xj > 0}.

Then x is a vertex iff Ag has linearly independent columns.

Proof (=)

>

>

>

assume Ap has linearly dependent columns
there exists d # 0 such that Agd =0
extend d to R™ by adding 0-components
now, Ad = 0 and d; = 0 whenever x; = 0
for sufficiently small A we have x + Ad € P

hence, x is not a vertex
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.
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have A1 x = b1; hence the first constraint is superfluous
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A ; this means

Ar = Zzz A; - Ay, for suitable A;

C1 if now by = 35 A; - b; then for all x with A;x = b; we also
have A1 x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints Ap,..., A;; we have
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A ; this means

Ar = Zzz A; - Ay, for suitable A;

C1 if now by = 35 A; - b; then for all x with A;x = b; we also
have A1 x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints Ap,..., A;; we have
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A ; this means

Ar = Zzz A; - Ay, for suitable A;

C1 if now by = 35 A; - b; then for all x with A;x = b; we also
have A1 x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints Ap,..., A;; we have

m m
A1x = Zi:Z Aj-Aix = Zi:Z Ai - b



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A ; this means

Ar = Zzz A; - Ay, for suitable A;

C1 if now by = 35 A; - b; then for all x with A;x = b; we also
have A1 x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints Ap,..., A;; we have

m m
A1x = Zi:Z Ai -Aix = Zi:Z Ai . bi + by



From now on we will always assume that the
constraint matrix of a standard form LP has full
row rank.

T
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Theorem 4
Given P = {x | Ax = b,x = 0}. x is a vertex iff there exists
Bc {1,...,n} with |B| = m and

» Ap is non-singular

> Xp = Alglb >0

> XN = 0

where N = {1,...,n} \ B.
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Theorem 4
Given P = {x | Ax = b,x = 0}. x is a vertex iff there exists
Bc{l1,...,n} with |B| = m and
» Ap is non-singular
> Xp = Alglb >0
> XN = O
where N = {1,...,n} \ B.
Proof

Take B = {j | x; > 0} and augment with linearly independent
columns until |B| = m; always possible since rank(A) = m.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | xj = 0};
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | xj = 0};

x is a basic feasible solution (gultige Basislosung) if in addition
x = 0.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | xj = 0};

x is a basic feasible solution (glltige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B c {1,...,n} with rank(Ag) = m
and |B| = m.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | xj = 0};

x is a basic feasible solution (glltige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B c {1,...,n} with rank(Ag) = m
and |B| = m.

x € R™ with Agx = b and x; = 0 forall j ¢ B is the basic
solution associated to basis B (die zu B assoziierte Basislosung)
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Algebraic View

{b, Sc, Sm}
(0/40|-120]0|390)

{b, sn, Sm}
(0132/032|550)

beer

max 13a + 23b

s.t. S5a + 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + Sm = 1190
a, b,sc,sh,Ssm=0
{a, b, sp}

{a, b, sm}
(12]28]0/0|210)

(19.41/25.53/0/-19.76/0)

{a, b, sc}
(26/14/140/0]0)

{Scs Shy Sm}
(0/0]480|160]1190)

ale {a, sc, sn} {a, sc, Sm}
(34/0130124/0)  (40(0/280|0]-210)



Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b,x20,clx>x?
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Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, c e Q" xe Q. Does there exist
xeQ"st. Ax=b,x20,clx>x?

Questions:
> |Is LP in NP? yes!
> Is LP in co-NP?
> IsLPin P?

Proof:
» Given a basis B we can compute the associated basis
solution by calculating Aglb in polynomial time; then we
can also compute the profit.
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Observation
We can compute an optimal solution to a linear program in time

O ((;‘1) - poly(n, m)).

> there are only (;‘1) different bases.

» compute the profit of each of them and take the maximum
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective
function.

Two BFSs are called adjacent if the bases just differ in one
variable.
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4 Simplex Algorithm

max 13a + 23b
s.t. 5a+ 15b + s,

4a + 4b + Sp
35a + 20b
a ’ b ) SC ) Sh

=480

=160
+ S, = 1190
, Sm =0
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4 Simplex Algorithm

max 13a + 23b

s.t. 5a+ 15b + s, = 480
da + 4b + s =160
35a + 20b + sm = 1190
a , b s Sc » Shoy Sm = 0
max Z basis = {s¢, Sn, Sm }
13a + 23b -Z=0 A=B=0
S5a + 15b + s = 480 z2=0
4a + 4b + Sp =160 Se =480
35a + 20b +Sm  =1190 | | $» =160
Sm= 1190
a g b y SC 5 Sh ] Sm 20
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Pivoting Step

max Z -
basis = {s¢, Sn,Sm}
13a + 23b -7Z=0 a=b=0
5a + 15b + s¢ =480 Z=0
4a + 4b + sp =160 sc =480
35a + 20b T G = 1190 Sh = 1?80
a, b,s,Sh, Sm >0 Sm=
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» choose variable to bring into the basis
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» chosen variable should have positive coefficient in objective
function



Pivoting Step

max Z -

basis = {s¢, Sh, Sm}

13a + 23b -7Z=0 a=b=0

5a + 15b + s. =480 Z =0

4a + 4b + sp =160 sc =480

35a + 20b S = 1190 Sn = 160
Sm= 1190

a ’ b ’ SC ’ Sh ) Sm = O

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective
function

» apply min-ratio test to find out by how much the variable
can be increased



Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

=1190

>0

basis = {s¢, Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test



Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

=1190

>0

basis = {s¢, Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test

» the existing basis variable in this row leaves the basis



max Z
13a + 23b
5a + 15b + s
4a + 4b + Su
35a + 20b + Sm
a ., b, sc, shn, Sm

-Z=0
=480
=160
=1190
>0

basis = {s¢, Sh, Sm}
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190




max Z basis = {s¢, S, Sm}
13a + 23b -Z=0 a=b=0
5a + 15b + sc = 480 Zz=0
4a+ 4b  +s, =160 | |sc =480
35a + 20b +sm =1190| | S» =100
o b se . sn . s 50 Sm= 1190

» Choose variable with coefficient > 0 as entering variable.
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13a + 23b

5a + 15b + s,
4a + 4b + Su
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a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» Choose variable with coefficient > 0 as

» If we keep a = 0 and increase b from 0 to 8 > 0 s.t. all
constraints (Ax = b, x > 0) are still fulfilled the objective
value Z will strictly increase.
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13a + 23b

5a + 15b + s
4a + 4b + Su
35a + 20b

a, b, s, sp

+ Sm

y Sm

-Z=0
=480
=160
=1190
>0

basis = {s¢, Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» Choose variable with coefficient > 0 as

» If we keep a = 0 and increase b from 0 to 8 > 0 s.t. all
constraints (Ax = b, x > 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 150.



max Z

13a + 23b
5a + 15b + s,
4a + 4b + Su
35a + 20b
a ] b ’ SC ’ Sh.

+ Sm

y Sm

-Z=0
=480
=160
=1190
>0

basis = {s., Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» Choose variable with coefficient > 0 as

» If we keep a = 0 and increase b from 0 to 8 > 0 s.t. all
constraints (Ax = b, x > 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 150.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.



max Z

13a + 23b
5a + 15b + s,
4a + 4b + Su
35a + 20b
a ] b ’ SC ’ Sh.

+ Sm

y Sm

-Z=0
=480
=160
=1190
>0

basis = {s., Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» Choose variable with coefficient > 0 as

» If we keep a = 0 and increase b from 0 to 8 > 0 s.t. all
constraints (Ax = b, x > 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 150.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

» The basic variable in the row that gives

min{480/15,160/4,1190/20} becomes the



max Z
13a + 23b
5a + 15b + s
4a + 4b + Sn
35a + 20b + Sm
a , b, sc, Sh, Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sh, Sm}
a=b=0

Z =0

sc =480

sp =160

Sm= 1190




max Z _
basis = {s¢, Sh, Sm}
13a + 23b - 7Z=0 D=0
5a + 15b + s =480 Z =0
4a + 4b + Sp =160 sc =480
35a + 20b + Sm =1190 Sh = 1?30
a, b,Ssc,Sh, Sm >0 Sm=

Substitute b = 1—15(480 —5a—S¢).



max Z
13a + 23b

5a + 15b
4a + 4b
35a + 20b

a , b

+ Sc
+ Sh
+ Sm
y Sc 5 Shoy Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sh, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

Substitute b =

15(480 - 5a — s¢).

max Z

23
155¢

1

155¢

4

2sc + Sm

SCJSh’Sm

- 7Z =-736
=32
=32
=550
=0

basis = {b, sp, Sm}

a =s.=0
Z =736
b =32
Sp =32
Sm= 550




max Z
16 23

Fa+ 1=5c - Z=-736
3a+ Db+ s =32
%a T+ = %sc + Sh =32

%a + - %SC + Sm =550

a,b, sc,sn, Sm >0

basis = {b, Sp, Sm }

a =s5.=0
Z =736
b =32
Sp =32
Sm= 550




max Z

%a+ %SC - Z=-736
3a+Db+ s =32
%a+ —%scqtsh =32
%a+ = %SC + Sm =550
a,b, sc,sn, Sm >0

basis = {b, Sp, Sm }

a =s5.=0
Z =736
b =32
Sp =32
Sm= 550

Choose variable a to bring into basis.



max Z
16 23

za+ 1=5c - Z=-736
3a+Db+ s =32
%a+ —%scqtsh =32
%a+ = %SC + Sm =550
a,b, sc,sn, Sm >0

basis = {b, Sp, Sm }

a =s5.=0
Z =736
b =32
Sp =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.



max Z

Lo 2,
%a+b+%sa
Sa+ —isc+sy

2a+ - 3s
a, b,

+ Sm

Sc,Sh,Sm

=-736
=32
=32
=550
>0

basis = {b, Sp, Sm }

a =s5.=0
Z =736
b =32
Sp =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.
Substitute a = %(32 + 14—55C - Sn).



max Z
16 23

Ja+ =S¢ -
%a+b+%sa

Sa+ —isc+sy

5a + 3sc + Sm
a,b, sc,sn,sm

7 =

>

-736
32

32
550
0

basis = {b, Sp, Sm }

a =s5.=0
Z =736
b =32
Sp =32
Sm= 550

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.
Substitute a = %(32 + 14—55C - Sn).

max Z
1
b + ESC
1
a - ﬁSC

3
25c

28K

1

85h

3

R

Sh ’ 5m

-Z

-800
28
=12
=210
>0

basis = {a, b, s}

Se=s,=0
Z =800
b =28
a =12
Sm= 210




4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.
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Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:

» any feasible solution satisfies all equations in the tableaux
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z =800 — s; — 2sp, S¢ = 0,5, = 0

» hence optimum solution value is at most 800
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z =800 — s; — 2sp, S¢ = 0,5, = 0
» hence optimum solution value is at most 800

» the current solution has value 800
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Matrix View

Let our linear program be

chxp
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XB

+ chxn
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Let our linear program be
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Apxp + ANXN
XB XN

The simplex tableaux for basis B is

t t A-1
Ixp + AEIANXN
XB XN
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Matrix View

Let our linear program be

chxp + chxn
Apxp + ANXN
XB XN

The simplex tableaux for basis B is

t t A-1
Ixp + AEIANXN
XB XN

The BFS is given by xy = 0, x5 = A,}lb.

v

N

Z — chAgtD
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Matrix View

Let our linear program be

chxp + chxy = Z
ABXB + ANXN = b
xXg xy = O
The simplex tableaux for basis B is
(ch —cbAg'AN)XN = Z - cbAtD
Ixp + AEIANXN = Aglb
XB , xy = O

The BFS is given by xy = 0, xp = A,}lb.

If (c§ — cbAz AN) < 0 we know that we have an optimum
solution.
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Geometric View of Pivoting

max 13a + 23b

s.t. 5a+ 15b + s =480
4a + 4b + Sp =160
35a + 20b + $m = 1190

a, b,sc,sh,Sm=0

~—

beer
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» Given basis B with BFS x*.

» Choose index j ¢ B in order to increase x;‘ from 0 to 0 > 0.
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» Basis variables change to maintain feasibility.

» Go fromx*tox* + 0 -d.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 0 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go fromx*tox* + 0 -d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B,L+j
» A(x* + 6d) = b must hold. Hence Ad = 0.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 0 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go fromx*tox* + 0 -d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B,L+j
» A(x* + 6d) = b must hold. Hence Ad = 0.
» Altogether: Apdp + Axj = Ad = 0, which gives
dp = —AglA,;.
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Algebraic Definition of Pivoting

Definition 5 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢B,L+jand dg = —Ag'Ay;j is called the j-th basis
direction for B.
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Algebraic Definition of Pivoting

Definition 5 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢B,L+jand dg = —Ag'Ay;j is called the j-th basis
direction for B.

Going from x* to x* + 0 - d the objective function changes by

0-ctd =0(cj— chAg Axj)
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Algebraic Definition of Pivoting

Definition 6 (Reduced Cost)
For a basis B the value

Ao b A=l A
Cj=cCj—CpAp Ay

is called the reduced cost for variable x;.

Note that this is defined for every j. If j € B then the above term
is O.
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Let our linear program be

chxp
Apxp
XB

+ chxn
+ AnNXN
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Algebraic Definition of Pivoting

Let our linear program be

chxp + chxn = Z
ABXB + ANXN = b
X xy = 0
The simplex tableaux for basis B is
(ch —cbAg'AN)XN = Z - cbAtD
Ixp + AEIANXN = AElb
XB , xy = O
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Algebraic Definition of Pivoting

Let our linear program be

chxp + chxy = Z
ABXB + ANXN = b
xXg xy = O
The simplex tableaux for basis B is
(ch —cbAg'AN)XN = Z - cbAtD
Ixp + AEIANXN = Aglb
XB , xy = O

The BFS is given by xy = 0, xp = A,}lb.

If (c§ — cbAz AN) < 0 we know that we have an optimum
solution.
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4 Simplex Algorithm

Questions:
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 9
by which we can safely increase the entering variable?
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 9
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ck — chAglAN) <0 ?

Then we can terminate because we know that the solution is
optimal.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke



4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 9
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ck —cbAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.

> If yes how do we make sure that we reach such a basis?

T
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The min ratio test computes a value 8 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.
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Min Ratio Test

The min ratio test computes a value 8 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;, is negative for a
constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;, are negative? Then we do not have a
leaving variable. Then the LP is unbounded!
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Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

m EADS Il 4 Simplex Algorithm =) =
©Harald Racke



Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?
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The objective function may not decrease!
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Termination

The objective function may not decrease!

Because a variable x, with £ € B is already 0.
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Termination
The objective function may not decrease!

Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 7 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x}‘ > 0} fulfills
|JI <m.
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Termination

The objective function may not decrease!
Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 7 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;f > 0} fulfills
|JI <m.

It is possible that the algorithm cycles, i.e., it cycles through a
sequence of different bases without ever terminating. Happens,
very rarely in practise.
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max 13a + 23b

s.t. S5a + 15b + s¢ =480
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3 max 13a + 23b
%
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

| {8cy Sy sm} ale ta, sc, sn}



Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).
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» The standard choice is the column that maximizes é,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes é,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/Ay, you reach a
degenerate basis.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Aj, <O forallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/Ay, you reach a
degenerate basis.

» Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.
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Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the
LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails
and we can conclude that the LP is unbounded, or we terminate
because the vector of reduced cost is non-positive. In the latter
case we have an optimum solution.
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How do we come up with an initial solution?

» Ax <b,x=0,and b = 0.
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» The standard slack from for this problem is
Ax +Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.
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» Ax <b,x=0,and b = 0.

» The standard slack from for this problem is
Ax +Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Thens = b, x =0 is a basic feasible solution (how?).

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke



How do we come up with an initial solution?

» Ax <b,x=0,and b = 0.

» The standard slack from for this problem is
Ax +Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.
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How do we come up with an initial solution?

» Ax <b,x=0,and b = 0.

» The standard slack from for this problem is
Ax +Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?
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Two phase algorithm
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Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.
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1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;vis.t. Ax +I=b, x =0, v = 0 using
Simplex. x = 0, v = b is initial feasible.
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Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
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Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;vis.t. Ax +I=b, x =0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.
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Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;vis.t. Ax +I=b, x =0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.

5. From this you can get basic feasible solution.
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Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;vis.t. Ax +I=b, x =0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v MW

Now you can start the Simplex for the original problem.
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Optimality

Lemma 8
Let B be a basis and x* a BFS corresponding to basis B. ¢ <0
implies that x* is an optimum solution to the LP.
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Duality

How do we get an upper bound to a maximization LP?

max
s.t.

13a
S5a
4a
35a

23b

15b <480
4b <160
20b <1190
a,b =0

+ o+ 4+ o+

T
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of
a,b = 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of
a,b = 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;aij = cj then >; y;b; will be an
upper bound.
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Duality

Definition 9
Let z = max{cix | Ax = b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w =min{bty | Aly = ¢,y =0}

is called the dual problem.
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Duality

Lemma 10
The dual of the dual problem is the primal problem.
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Duality
Lemma 10
The dual of the dual problem is the primal problem.

Proof:

» w=min{bly | Aly > ¢,y =0}
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Duality

Lemma 10

The dual of the dual problem is the primal problem.

Proof:
» w=min{bly | Aly > ¢,y =0}
» w=max{-bty | -Aly < —c,y =0}
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Duality

Lemma 10

The dual of the dual problem is the primal problem.

Proof:
» w=min{bly | Aly > ¢,y > 0}
> W = max{—bty | —At_’)/ <-c,y= 0}

The dual problem is

» z=min{-c!x | —Ax > —b,x = 0}
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Duality

Lemma 10

The dual of the dual problem is the primal problem.

Proof:
» w=min{bly | Aly > ¢,y > 0}
» w=max{-bty | -Aly < —c,y =0}

The dual problem is
» z=min{-c!x | —Ax > -b,x > 0}

» z =max{cix | Ax = b,x = 0}
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Weak Duality

Let z = max{cix | Ax < b,x = 0} and

w =min{bty | Aly > ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

y is dual feasible, iff y € {y | Aty > ¢,y = 0}.
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Weak Duality
Let z = max{cix | Ax < b,x = 0} and
w =min{bty | Aly > ¢,y = 0} be a primal dual pair.
x is primal feasible iff x € {x | Ax < b,x = 0}

y is dual feasible, iff y € {y | Aty > ¢,y = 0}.

Theorem 11 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

clx<z<w<b'y.
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Weak Duality

©Harald Racke
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Weak Duality

Aty > ¢ = xtAly = Xtc
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Weak Duality

Aty > ¢ = XAy > xte (X = 0)
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Weak Duality

Aty > ¢ = XAy > xte (X = 0)

AxX <b
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Weak Duality

At > c = RLALD > ke (% = 0)

AX <b = ytAX < P'b
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Weak Duality

At > c = RLALD > ke (% = 0)

AX <b = ytAX < P'b (7 = 0)
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Weak Duality

AlY = c = RALD = Rlc (% = 0)
AX <b = ytAX < P'b (7 = 0)

This gives

IA

<

m EADS I 5 Duality
©Harald Racke



Weak Duality

Aty > ¢ = XTAYY > Xte (X = 0)
AX <b = ytAX < P'b (7 = 0)
This gives

clx < 'A% < b'y .

Since, there exists primal feasible X with ¢!X = z, and dual
feasible ¥ with bty = w we get z < w.
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Weak Duality

Aty > ¢ = XAy > xte (X = 0)
AX <b = ytAX < P'b (7 = 0)
This gives

clx < 'A% < b'y .

Since, there exists primal feasible X with ¢!X = z, and dual
feasible ¥ with bty = w we get z < w.

If P is unbounded then D is infeasible.
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The following linear programs form a primal dual pair:

z =max{cix | Ax = b,x = 0}
w =min{b'y | Aly > c}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{cix | Ax = b,x = 0}
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Proof

Primal:

max{cix | Ax = b,x = 0}
=max{cix | Ax <b,-Ax < -b,x = 0}
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Proof

Primal:

max{cix | Ax = b,x = 0}
=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | [i]x < [_bb},x > 0}
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Proof

Primal:

max{cix | Ax = b,x = 0}

=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | [_ﬁ]x < [_bb},x > 0}

Dual:

min{[b" —b']y | [At —Al]y > ¢,y > 0}
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Proof

Primal:

max{cix | Ax = b,x =0}

=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | [_ﬁ]x < [_bb},x > 0}

Dual:
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Proof

Primal:

max{cix | Ax = b,x =0}

=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | [_ﬁ]x < [_bb},x > 0}

Dual:

min{[bt —bt]y | [At —Al]y > ¢,y = 0}
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Proof

Primal:

max{cix | Ax = b,x =0}

=max{cix | Ax <b,-Ax < -b,x = 0}

= max{cix | [_ﬁ]x < [_bb},x > 0}

Dual:

min{[bt —bt]y | [At —Al]y > ¢,y = 0}
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

*

bty
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty*
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty* — (ABxi;k)ty*
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty* — (ABxi;k)ty*
= (Apx3)t(Agh) e
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty* — (ABxi;k)ty*
= (Apx§) (Agh) e = (x§) AR (A" ep
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.

bty* — (Ax*)ty* — (ABxi;k)ty*
= (Apx§) (Agh) e = (x§) AR (A" ep

=clx*
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

é=ct—chbAz'A<0

This is equivalent to Af(Agl)icp > ¢
v* = (Agh)tcp is solution to the dual min{b!y|Aly > c}.
bty* — (Ax*)ty* — (ABxi;k)ty*
= (Apx)H (A e = (x§)tAL(AgY) e

=clx*

Hence, the solution is optimal.
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Strong Duality

Theorem 12 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

z¥ =w*
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Lemma 13 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Thenmin{ f(x) : x € X} exists.
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Lemma 14 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let vy ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)(x —x*) <0.
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Proof of the Projection Lemma
» Define f(x) = Iy — x|
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Proof of the Projection Lemma

» Define f(x) = Iy — x|
» We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma

» Define f(x) = Iy — x|
» We want to apply Weierstrass but X may not be bounded.
» X # (0. Hence, there exists x’ € X.
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Proof of the Projection Lemma
Define f(x) = [l — x|

\4

X # (0. Hence, there exists x’ € X.
Define X' = {x e X | |y — xIl = lly — x’|I}. This set is
closed and bounded.

vV v VY

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma
Define f(x) = [l — x|

\4

X # (0. Hence, there exists x’ € X.

Define X' = {x e X | |y — xIl = lly — x’|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

vV v VY

v

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*1?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*I12 < [ly — x* —e(x — x*)||?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*I12 < [ly — x* —e(x — x*)||?

=y = x*1> + €2llx — x*|I° - 2e(y — x*)t(x — x*)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*I12 < [ly — x* —e(x — x*)||?

=y = x*1> + €2llx — x*|I° - 2e(y — x*)t(x — x*)

Hence, (v — x*)t(x — x*) < Jellx — x*|2.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*I12 < [ly — x* —e(x — x*)||?

=y = x*1> + €2llx — x*|I° - 2e(y — x*)t(x — x*)

Hence, (v — x*)t(x — x*) < Jellx — x*|2.

Letting € — 0 gives the result.
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Theorem 15 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: atx = «}

where a € R™, x € R that separates y from X. (aty < «;
alx = « forall x € X)
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.

» By previous lemma (y — x*)i(x —x*) <0 for all x € X.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.

» By previous lemma (y — x*){(x —x*) <0 for all x € X.

» Choose a = (x* — y) and o = alx*.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.

» By previous lemma (y — x*){(x —x*) <0 for all x € X.

» Choose a = (x* — y) and o = alx*.
» Forx € X:al(x —x*) =0, and, hence, alx = «.

I:H={x|atx=o<}
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to y in X.

» By previous lemma (y — x*){(x —x*) <0 for all x € X.
» Choose a = (x* — y) and o = alx*.

» Forx € X:al(x —x*) =0, and, hence, alx = «.

v

Also, aly = al(x* —a) = «x - |lall® < «

I:H={x|atx=o<}
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Lemma 16 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax eR"withAx =b,x >0
2. 3y e R™ with Ay >0, bty <0
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Lemma 16 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax eR"withAx =b,x >0
2. 3y e R™ with Ay >0, bty <0
Assume X satisfies 1. and ¥ satisfies 2. Then

0>y'b=y'Ax =0
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Lemma 16 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax eR"withAx =b,x >0
2. 3y e R™ with Ay >0, bty <0
Assume X satisfies 1. and ¥ satisfies 2. Then
0>y'b=y'Ax =0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma



Proof of Farkas Lemma

Now, assume that 1. does not hold.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.

We want to show that there is y with Aty >0, bty < 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with Aty >0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, y'b < «
and y!'s > aforall s € S.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with Aty >0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, y'b < «
and y!'s > aforall s € S.

0eS=>ua=<0=yh<0



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with Aty >0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, y'b < «
and y!'s > aforall s € S.

0eS=>ua=<0=yh<0

ylAx > « for all x > 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with Aty >0, bty < 0.

Let y be a hyperplane that separates b from S. Hence, y'b < «
and y!'s > aforall s € S.

0eS=>ua=<0=yh<0

ytAx > « for all x > 0. Hence, y'A > 0 as we can choose x
arbitrarily large.



Lemma 17 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix eR*"withAx <b,x =0
2. Ay e R™ with Aty >0,bty <0,y >0
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Lemma 17 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax eR" withAx <b, x>0
2. Ay e R™ with Aty >0,bty <0,y >0

Rewrite the conditions:

1. 3x € R™ with [AI]-[’;]=b,xzo,szo

At
2. EIye[meith[I]yzO,bty<O
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Proof of Strong Duality

P: z =max{cix | Ax <b,x =0}

D: w =min{bty | Aty > ¢,y > 0}

Theorem 18 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality

©Harald Racke

5 Duality



Proof of Strong Duality

z < w: follows from weak duality

‘m EADS Il 5 Duality
©Harald Racke



Proof of Strong Duality

N
IA

w: follows from weak duality

zZzWw:
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ = w:
We show z < ot implies w < «.
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx € R"
s.t. Ax < b
—clx < -«
x = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

JIx € R" dy e R™;zeR
st. Ax < b sit. Aty —cz = 0
—-cfx = -« ybt -z < 0
x = 0 v,z = 0
- - -
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

JIx € R" dy e R™;zeR
st. Ax < b sit. Aty —cz = 0
—clx < -« ybt—axz < 0
x = 0 v,z = 0
From the definition of & we know that the first system is
infeasible; hence the second must be feasible.
& - =
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Proof of Strong Duality

dy eRM™;zeR

s.t. Aty —cz
ybt — az
.z

vV A IV

S
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Proof of Strong Duality

dy eRM™;zeR

s.t. Aty —cz
ybt — az
.z

vV A IV

S

If the solution 7y, z has z = 0 we have that

dy e R™
s.t. Aly >
ybt <
y =

S

is feasible.
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Proof of Strong Duality

dy eRM™;zeR

sit. Aty —cz = 0
ybt -z < 0
v,z = 0

If the solution 7y, z has z = 0 we have that

dy e R™
s.t. Aly > 0
ybt < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.
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Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.
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Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.
We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but by < . This means that
w < K.
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Fundamental Questions

Definition 19 (Linear Programming Problem (LP))

Let Ae Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,clx = x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?
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Fundamental Questions

Definition 19 (Linear Programming Problem (LP))
Let A e Q™" b e Q™ c e Q" ax e Q. Does there exist
xeQ"st. Ax=b,x=20,clx = x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
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Fundamental Questions

Definition 19 (Linear Programming Problem (LP))
Let A e Q™" b e Q™ c e Q" ax e Q. Does there exist
xeQ"st. Ax=b,x=20,clx = x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:

» Given a primal maximization problem P and a parameter «.

Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.
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Fundamental Questions

Definition 19 (Linear Programming Problem (LP))
Let A e Q™" b e Q™ c e Q" ax e Q. Does there exist
xeQ"st. Ax=b,x=20,clx = x?

Questions:
> Is LP in NP?
> |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraint and that it has dual cost < «.
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Complementary Slackness

Lemma 20
Assume a linear program P = max{ctx | Ax < b;x = 0} has
solution x* and its dual D = min{bty | Aty > ¢;v = 0} has
solution y*.

1. Ifx;.k > 0 then the j-th constraint in D is tight.

. I the j-th constraint in D is not tight than x} = 0.

2
3. If y} > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than y; = 0.
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Complementary Slackness

Lemma 20
Assume a linear program P = max{ctx | Ax < b;x = 0} has
solution x* and its dual D = min{bty | A'y > ¢;y > 0} has
solution y*.

1. Iij > 0 then the j-th constraint in D is tight.

If the j-th constraint in D is not tight than xJ’-k =0.

2.
3. If y} > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than y; = 0.

If we say that a variable x;k (¥{) has slack if x;?‘ >0 (> 0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cix* < y*tAx* < bty*
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

chx* < y*tAx* < bt_’y*
Because of strong duality we then get

Ctx* — y*tAx* — bty*
This gives e.g.

Z(ytA ~chjxf=0
J
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

clx* < y*Ax* < bty*
Because of strong duality we then get
Ctx* — y*tAx* — hty*

This gives e.g.

>(ta- ct)jx}‘ =0

J
From the constraint of the dual it follows that y'A > ct. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (¥'A —c');j > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190

a,b =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €p,
and &y, respectively.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €p,

and &y, respectively.
The profit increases to max{cix | Ax < b + &x = 0}.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €p,
and &y, respectively.
The profit increases to max{ctx | Ax < b + &x > 0}. Because of
strong duality this is equal to

min (bt +€l)y
s.t. Aty
y

2%
(e}
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Interpretation of Dual Variables

m EADS Il 5 Duality
©Harald Racke



Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/*.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/*.

Therefore we can interpret the dual variables as marginal prices.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by zieiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by zieiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

max 13a + 23b

s.t. 5a + 15b + s. =480
4a + 4b + s =160
35a + 20b + sm = 1190

a, b,sc,Sn,sm=0

beer
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Example
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s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
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The change in profit when increasing hops by one unit is
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Example

max 13a + 23b

s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
35a + 20b + sm = 1190
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Example

max 13a + 23b

s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
35a + 20b + sm = 1190

a, b,sc,Sn,Ssm=0

beer

--T ale

The change in profit when increasing hops by one unit is
—Cp=—-Cp+ CEAEIA*]@ = CéAEleh.
\—,—J

y*



Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 21
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R{ that satisfies

1. For each edge (x,y)

(capacity constraints)
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Flows

Definition 21
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R{ that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V\ {s,t}

zfvx = fov .

(flow conservation constraints)
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Flows

Definition 22
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -
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Flows

Definition 22
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

T

max DSz =22 fas
st. V(zyw) eV xV fow < Czw lzw
Vw=s,t 2, fow—22fwz = 0 pu
fzw = 0
min 2 xy) Cxytxy
s.t. fxy X,y £5,8) 1 1xy—1px+lpy = O
Sfsy (¥ #5,t): 145y +1py = 1
Joes (52 22 8,0) ¢ 10xs—1px > -1
Sty (¥ =5s,t): 10;, +1py > 0
fxt (x #5,1): 10— 1px > 0
i & 14, > 1
s 14;¢ > -1
Lxy = 0
EADS Il 5 Duality =) =
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LP-Formulation of Maxflow
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LP-Formulation of Maxflow

min
S.t.

Z(xy) ny‘exy

fxy (x,y #s,t): 1€xy_1px+1py

fsy (v #s,t):
fxs (x =5s,t):
Jiy (v =5,8):
fxt (x =5s,t):
ot
Sts:

14sy— ps+lpy

1xs—1px+ ps
14— pi+lp,
Wxi—1px+ pi
Wa— pst+ pt
15— pe+ ps

Uxy

vV IV IV IV IV IV IV

\%

S O O O O o o o

with p; =0 and p; = 1.

T

EADS Il
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LP-Formulation of Maxflow

.
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LP-Formulation of Maxflow

min X xy) Cxylxy

sit. fyy: Llxy—1lpx+lpy = 0
lxy = 0
ps = 1
pt = O

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) nyexy

st fxy: 1lxy—1px+lp, = O
Oy = 0
ps = 1
pt = O

We can interpret the £, value as assigning a length to every edge.

The value p, for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) nyexy

st fxy: 1lxy—1px+lp, = O
Oy = 0
ps = 1
pt = O

We can interpret the £, value as assigning a length to every edge.

The value p, for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint py < #Xy + py then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < €Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.
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Degenerate Example

beer

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,Sn,Ssm=0

B ale
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s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

| {Sc, Shy Sm}



Degenerate Example

3 max 13a + 23b
%
s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,Sh,Sm=20

beer

| {Scy Shy Sm} ale {a, sc, sn}



Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s¢ =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

| {8cy Sy sm} ale ta, sc, sn}



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{cfx, Ax = b;x > 0}. Change it into
LP' := max{ctx,Ax = b’,x = 0} such that
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{cfx, Ax = b;x > 0}. Change it into
LP' := max{ctx,Ax = b’,x = 0} such that

I. LP' is feasible
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{cfx, Ax = b;x > 0}. Change it into
LP' := max{ctx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{cfx, Ax = b;x > 0}. Change it into
LP' := max{ctx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).

I1l. LP’ has no degenerate basic solutions
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Perturbation

Let B be index set of some basis with basic solution

x5 =Ag'b = 0,x3% =0 (i.e. Bis feasible)
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Perturbation

Let B be index set of some basis with basic solution
x5 =Ag'b = 0,x3% =0 (i.e. Bis feasible)
Fix

b':=b+Ap| ! | fore>0.

Em

This is the perturbation that we are using.
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

Agl| b+ Ap| =xi+| 1 |=0.
em em
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Property Il

Let B be a non-feasible basis. This means (Aglb)i < 0 for some
row i.
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Property Il

Let B be a non-feasible basis. This means (A]glb)i < 0 for some
row i.

Then for small enough € > 0

&
Azl | b+ Ap

em
i
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Property Il

Let B be a non-feasible basis. This means (A]glb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ag| = (Az'D)i + | Az'A | <0

gm em
i i
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Property Il

Let B be a non-feasible basis. This means (A]glb)i < 0 for some
row i.

Then for small enough € > 0

& &
AN b+ Ap| = (Az'h)i+ | Azl Ap | <0
em . em) ).
1 1

Hence, B is not feasible.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke



Property lll
Let B be a basis. It has an associated solution
£

X

_ a1 -1

Em

in the perturbed instance.
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Property lll
Let B be a basis. It has an associated solution
£

X

* _ A—1 -1

Em
in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.
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Property lll

Let B be a basis. It has an associated solution
£
x¥=Az;'b+ Azl Ap
B B B
Em

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.
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Property lll

Let B be a basis. It has an associated solution
£

X

* _ A—1 -1

Em
in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0. Hence, no degeneracies.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills
¢=(ct-chAagta) <0

then we have found an optimal basis.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills
¢=(ct-chAagta) <0

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills
¢ = (ct - chAgtA) <0

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.

» If it terminates because it finds a variable x; with ¢; > 0 for
which the j-th basis direction d, fulfills d = 0 we know that
LP’ is unbounded. The basis direction does not depend on
b. Hence, we also know that LP is unbounded.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
Simulate behaviour of LP” without explicitly doing a perturbation.
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Lexicographic Pivoting
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke



Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

b"=b+

Sm
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Matrix View

Let our linear program be

chxp + chxy = Z
ABXB + ANXN = b
xXg xy = O
The simplex tableaux for basis B is
(ch —cbAg1AN)XN = Z - cbAgtD
Ixp + AEIANXN = Aglb
XB , xy = O

The BFS is given by xy = 0, xp = A,}lb.

If (c§ — cbAz AN) < 0 we know that we have an optimum
solution.
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Ay, > 0 and
minimizes
Op
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Ay, > 0 and
minimizes .

_ by
A€e

0p
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Ay, > 0 and
minimizes .
by (Ag'b)y

0p= 2L = 2B
Ao (Ap'Ase)y
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Ay, > 0 and
minimizes
o, bv _ _(Ag'b)y

Ao (Ap'Ase)y
{ is the index of a leaving variable within B. This means if e.qg.
B ={1,3,7,14} and leaving variable is 3 then £ = 2.
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Lexicographic Pivoting

Definition 23
U <jex v if and only if the first component in which u and v
differ fulfills u; < v;.
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Lexicographic Pivoting

LP’ chooses an index that minimizes
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Lexicographic Pivoting

LP’ chooses an index that minimizes

&
Agl| b+
e 0
O = (ApAe)y
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& _1 &
Azl b+ Ap (B1D)
gm P gm
O = (Ag'Ase)p - (Ap'Ase)p
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
£ A £
Azl b+ Ag (b 1D
9, — em 0 em
t -1 —1
(AB A*e)€ (AB A*e)€
_ {-throwof Ag'(b | 1) | €
(A§1A*e)£
Sm
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of Azl (b | I)

(AglA*e)ﬂ

is lexicographically minimal.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of Azl (b | I)

(AglA*e)ﬂ

is lexicographically minimal.

Of course only including rows with (A,}lA*e)g > 0.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of Azl (b | I)

(AglA*e)ﬂ

is lexicographically minimal.

Of course only including rows with (A,}lA*e)g > 0.

This technique guarantees that your pivoting is the same as in

the perturbed case. This guarantees that cycling does not occur.
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Number of Simplex Iterations
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most <:,;> iterations, because it will not visit a basis twice.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (:,;) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (:,;) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (:,‘L) iterations then Simplex is not a

polynomial time algorithm.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most <:,;> iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;‘L) iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?
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Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.
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Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.
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I Rt
max clx ! B I :
st. 0<x, <1 : I l
| | |
0<x»<1 ! ! |
]

| ! |
| | |
| | |
O0<xp=<1 I ! I
| \-N
“{ L

X1 T -1

21 constraint on n variables define an n-dimensional hypercube
as feasible region.

The feasible region has 2™ vertices.
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|

I

I

‘_ —_
\

However, Simplex may still run quickly as it usually does not
visit all feasible bases.

In the following we give an example of a feasible region for
which there is a bad Pivoting Rule.

=)
A
X

S
IA
—

X2
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Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving
variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable
the leaving variable is unique.
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Klee Minty Cube

max X
s.t. 0<x; =<1
€EX]1 < xp <1-€x3
€EX? < x3 <1-€x?
€EXpn-1<Xpn<1-€xp
xi =0

(l,e,ea_

X1




Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).
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» Every basis is defined by 2n variables, and n non-basic
variables.
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» The degeneracies come from the non-negativity constraints,
which are superfluous.



Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

> In the following all variables x; stay in the basis at all times.



Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).



Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.
» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).

» We can also simply identify each basis/vertex with the
corresponding hypercube vertex obtained by letting € — 0.



Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

T
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence Sy, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence Sy, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.

» An unfortunate Pivoting Rule may choose this sequence,
and, hence, require an exponential number of iterations.

T
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Klee Minty Cube

(L1~

max Xn
s.t. 0<x; =<1
€EX]1 < Xx2 <1-€x1
€EXy) <Xx3<1-€x2
(0,0,1)

0,1,1-¢)

0,1,¢€)

(1€ )
X1
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Klee Minty Cube

(L1~

max X
s.t. 0<x1 =<1
€EX] < Xx2 <1-€x1
€EX? < Xx3=<1-€x2
(0,0,1)

0,1,1-¢)

0,1,¢€)

(1€ )
X1

‘————__(1,_1—e,e|—53)/"
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Klee Minty Cube

(L1~

(1, € €2)4
X1

max X
s.t. 0<x; =<1
€EX] < Xx2 <1-€x1
€EX? < Xx3=<1-€x2
(0,0,1)

0,1,1-¢)

0,1,¢€)
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Klee Minty Cube

max Xn
s.t. 0<x; =<1
€EX] < X2 <1—-€x1
€EX? < Xx3=<1-€x2
(0,0,1)

Lel-. 0,1,1-¢)

0,1,¢€)

|
I
I
1
I
I
I
I
I
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Klee Minty Cube

max Xn
s.t. 0<x1 =<1
€EX] < X2 <1—-€x1
€EX? < Xx3=<1-€x2
(0,0,1)
Lel- 0,1,1 -¢€)
0,1,¢)
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Klee Minty Cube

max X
s.t 0<x1 =<1

€EX1 <x2<1-€x;

€EXy < x3<1—-€x2
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Klee Minty Cube

max X
s.t 0<x; =<1

€ExX1 <x2<1-€x;

€EXy < x3<1—-€x2

1Lel-. 0,1,1 -¢)
0,1,¢€)
(l.e.e:i) = - "X

=y L) -
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Klee Minty Cube

max X
s.t 0<x; =<1

€Ex1 <xp<1-€x;

€EXy < x3<1—-€x2

et~ ©1,1-0
0,1,¢)
ez --"x2
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Klee Minty Cube

max X
s.t 0<x1 =<1

€Ex1 <xp<1-€x;

€EXy < x3<1—-€x2

et~ ©1,1-0
0,1,¢)
ez --"x2

‘————__(1._1—e,e|—53)/”



Analysis

The sequence S, that visits every node of the hypercube is
defined recursively

(0,...,0,0,0)

ésn—l
0,...,0,1,0)

s
0,...,0,1,1)

% et
0,...,0,0,1)

The non-recursive caseis S =0 -1
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Analysis

Lemma 24
The objective value x, is increasing along path Sy,.
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Proof by induction:
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v



Analysis

Lemma 24
The objective value x, is increasing along path Sy,.

Proof by induction:

1: obvious, since S =0—-1,and 1 > 0.

n
n-1-n
For the first part the value of x;, = exy_1.

By induction hypothesis x;,—1 is increasing along Sy -1,
hence, also x,.
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Analysis

Lemma 24
The objective value x, is increasing along path Sy,.

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

n-1-n

For the first part the value of x;, = exy_1.

By induction hypothesis x;,—1 is increasing along Sy -1,
hence, also x;,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x;, for
small enough €.

v

v
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Analysis

Lemma 24
The objective value x, is increasing along path Sy,.

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

n-1-n

>

>

For the first part the value of x;, = exy_1.

By induction hypothesis x;,—1 is increasing along Sy -1,
hence, also x;,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x;, for
small enough €.

For the remaining path S;Y, we have x,, = 1 — ex,_1.



Analysis

Lemma 24
The objective value x, is increasing along path Sy,.

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

n-1-n

>

>

For the first part the value of x;, = exy_1.

By induction hypothesis x;,—1 is increasing along Sy -1,
hence, also x;,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x;, for
small enough €.

For the remaining path S;Y, we have x,, = 1 — ex,_1.

By induction hypothesis x;,—1 is increasing along Sy -1,

hence —exy,_1 is increasing along S5, .



Remarks about Simplex

Observation
The simplex algorithm takes at most (::L) iterations. Each
iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.
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Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for
choosing entering and leaving variables) there exist lower
bounds that require the algorithm to have exponential running
time (Q(29M))) (e.g. Klee Minty 1972).
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Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Q(22™"*)) for & > 0) (Friedmann,
Hansen, Zwick 2011).
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Remarks about Simplex

Conjecture (Hirsch)
The edge-vertex graph of an m-facet polytope in d-dimensional
Euclidean space has diameter no more than m — d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form
O(poly(m,d)) is open.
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8 Seidels LP-algorithm

» Suppose we want to solve min{ctx | Ax > b;x > 0}, where
x € R4 and we have m constraints.
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8 Seidels LP-algorithm

» Suppose we want to solve min{ctx | Ax > b;x > 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (mwtd)) ~ (m+ d)"™. (slightly better bounds on
the running time exist, but will not be discussed here).

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke



8 Seidels LP-algorithm

» Suppose we want to solve min{ctx | Ax > b;x > 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (mwtd)) ~ (m+ d)"™. (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.
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8 Seidels LP-algorithm

» Suppose we want to solve min{ctx | Ax > b;x > 0}, where
x € R% and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (mwtd)) ~ (m+ d)"™. (slightly better bounds on
the running time exist, but will not be discussed here).

> If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
o(d!-m), i.e., linear in m.

T
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8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cfx
st. Ax = b
x = 0

» Further we assume that the LP is non-degenerate.

» We assume that the optimum solution is unique.
» We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min clx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c’x for any basic feasible
solution.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables; denote the resulting matrix with A.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables; denote the resulting matrix with A.

If B is an optimal basis then xp with Agxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke



Theorem 25 (Cramers Rule)
Let M be a matrix with det(M) = 0. Then the solution to the

system Mx = b is given by
det(Mj)

Xi = det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Proof:
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Proof:

» Define

Xj

el...ej_lxej+1..-

en

T
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Proof:

> Define o
Xj: e] - -ej_1Xeji1 ey

Note that expanding along the j-th column gives that
det(X;) = x;.

T
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Proof:

» Define | Dl |
Xj: el...ej_lxej+1...en

Note that expanding along the j-th column gives that
det(Xj) = Xj.
> Further, we have

MXJ.: Me; ---Mej_l MxMej+1 -+ Mey :Mj
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Proof:

» Define | Dl |
Xj: el...ej_lxej+1...en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

» Further, we have

MXJ.: Me; ---Mej_l MxMej+1 -+ Mey :Mj

> Hence,
det(Mj)
XJ = det(XJ) = W
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)|
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

[det(C)l=| > [] sen(m)Cin

mTeESH 1<i<m
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

[det(C)l=| > [] sen(m)Cin
TESM 1<i<m
< > ] ICnwl

TESH 1<ism
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)| > 11 sen(m)Cing

mTeESH 1<i<m

> T] G

TESH 1<ism

IA

<m!.-zZMm .
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Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|
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Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| < H I Csill

m EADS Il 8 Seidels LP-algorithm
©Harald Racke



Bounding the Determinant

Alternatively, Hadamards inequality gives

m

|det(C)[ < l_[ [Cuill < ]_[(\/WZ)
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Bounding the Determinant

Alternatively, Hadamards inequality gives

m

|det(C)[ < l_[ [Cuill < ]_[(\/WZ)

< mm/ZZm )
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Hadamards Inequality

Hadamards inequality says that the red volume is smaller than
the volume in the black cube (if |le1]| = lla1ill, lle2ll = lla2|l,
llesll = llasll).
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Ensuring Conditions

Given a standard minimization LP

min clx
s.t. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c!x for any basic feasible
solution. Add the constraint c!x > —-mZ(m! - Z™) — 1.
Note that this constraint is superfluous unless the LP is
unbounded.



Ensuring Conditions
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Ensuring Conditions

Make the LP non-degenerate by perturbing the right-hand side
vector b.
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Ensuring Conditions

Make the LP non-degenerate by perturbing the right-hand side
vector b.

Make the LP solution unique by perturbing the optimization
direction c.
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Ensuring Conditions

Make the LP non-degenerate by perturbing the right-hand side
vector b.

Make the LP solution unique by perturbing the optimization
direction c.

Compute an optimum basis for the new LP.

» If the costis cfx = —(mZ)(m! - Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.
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In the following we use H to denote the set of all constraints
apart from the constraint ctx > —-mZ(m!- Z™) — 1.
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In the following we use H to denote the set of all constraints
apart from the constraint ctx > —-mZ(m!- Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set H of
explicit, non-degenerate constraints over d variables, and
minimizes ctx over all feasible points.
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In the following we use H to denote the set of all constraints
apart from the constraint ctx > —-mZ(m!- Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set H of
explicit, non-degenerate constraints over d variables, and
minimizes ctx over all feasible points.

In addition it obeys the implicit constraint
ctx = —-(m2Z)(m!-Z™M) - 1.
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choose random constraint h € H
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: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*
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Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5: X* — SeidellLP(H,d)

6: if Xx* = infeasible then return infeasible

7. if X* fulfills h then return £*

8: // optimal solution fulfills h with equality, i.e., Apx = by,
9: solve Apx = by for some variable xy;

10: eliminate xp in constraints from H and in implicit constr.;




Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5: X* — SeidellLP(H,d)

6: if Xx* = infeasible then return infeasible

7. if X* fulfills h then return £*

8: // optimal solution fulfills h with equality, i.e., Apx = by,
9: solve Apx = by for some variable xy;

0: eliminate xp in constraints from H and in implicit constr.;
1: X* — SeidellLP(H,d — 1)




Algorithm 1 SeidelLP(H,d)

A w N - O 0

NP2 R T

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., Ayx = by,
solve Apx = by, for some variable xy;

. eliminate xp in constraints from H and in implicit constr.;

* — SeidellP(H,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution
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» If d =1 we can solve the 1-dimensional problem in time
O(m).
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» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d >1 and m = 0 we take time O(d) to return
d-dimensional vector x.
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8 Seidels LP-algorithm

» If d = 1 we can solve the T-dimensional problem in time
O(m).

» If d >1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.
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» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d >1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T(m —1,d — 1).
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8 Seidels LP-algorithm

If d =1 we can solve the 1-dimensional problem in time
O(m).

If d > 1 and m = 0 we take time ©(d) to return
d-dimensional vector x.

The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T(m —1,d — 1).

The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function (recall that the solution is unique).

T
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This gives the recurrence

O(m) ifd=1

o(ad) ifd>1landm=0
od) +T(m-1,d)+
4(O(dm)+Tim-1,d-1)) otw.

T(m,d) =

Note that T(m, d) denotes the expected running time.
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We show T(m,d) < Cf(d) max{1l,m}.

d=1:
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T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1,m-=1:
T(1,d) =0(d) +T(0,d) + d(O(d) + T(0,d — 1))
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1,m-=1:
T(1,d) = O(d) + T(0,d) + d(O(d) +T(0,d — 1))
<Cd+Cd+Cd?>+dT(0,d-1)
< Cf(d)max{1,m} for f(d) = 4d?



8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)
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d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)
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d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)

T(m,d) =0(d) + T(m—1,d) + %(O(dm) +T(m-1,d-1))

<Cd+Cf(d)(m—1)+Cd? + %Cf(d— 1)(m—-1)
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d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)

T(m,d) =0(d) + T(m—1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd? + %Cf(d— 1)(m—-1)

<2CA+Cf(d)(m—-1)+dCf(d-1)
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d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)

T(m,d) =0(d) + T(m—1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd? + %Cf(d— 1)(m—-1)
<2Cd* +Cf(d)(m—1)+dCf(d-1)

<Cf(dym
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d>1m>1:
(by induction hypothesis statm. true ford’ <d,m’ = 0;
andford =d, m' <m)

T(m,d) =0(d) + T(m—1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd? + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1)+dCf(d—1)
<Cf(dym

if f(d)>df(d—1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke



8 Seidels LP-algorithm

> Define f(1) =4-12 and f(d) = df(d —1) + 4d? ford > 1.
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d)
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> Define f(1) =4-12 and f(d) = df(d —1) + 4d? ford > 1.
Then
f(d) =4d?> +df(d-1)
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.

Then
F(d) =4d?> +dfd-1)
=4d? +d [4(d— D2+ (d-1)f(d- 2)]
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d) =4d? +df(d-1)
=4d2+d[4(d—1)2+(d—1)f(d—2)]
=4d? +d[4d-1*+(d-1) [4d -2+ (d-2)f(d-3)]]
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d) =4d? +df(d-1)
=4d2+d[4(d—1)2+(d—1)f(d-2)]
=4d? +d[4d-1*+(d-1) [4d -2+ (d-2)f(d-3)]]

=4d% +4d(d - 1)2 +4d(d - 1)(d-2)%2 + ...
+4d(d-1)(d-=2)-...-4-3-12
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d) =4d? +df(d-1)
=4d2+d[4(d—1)2+(d—1)f(d-2)]
=4d? +d[4d-1*+(d-1) [4d -2+ (d-2)f(d-3)]]
=4d* +4d(d - 1)> +4d(d - 1)(d - 2)* +...

+4d(d-1)(d-=2)-...-4-3-12
B 2 (d-1)2 (d-2)°
_4d!(d!+ (d—l)!+ d—2)l +>
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d) =4d? +df(d-1)
=4d2+d[4(d—1)2+(d—1)f(d-2)]
=4d? +d[4d-1*+(d-1) [4d -2+ (d-2)f(d-3)]]
=4d* +4d(d - 1)> +4d(d - 1)(d - 2)* +...

+4d(d-1)(d-=2)-...-4-3-12
B 2 (d-1)2 (d-2)°
_4d!(d!+ (d—l)!+ d—2)l +>
=0(d)
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» Define f(1) =4-12and f(d) = df(d — 1) + 4d? for d > 1.
Then
f(d) =4d? +df(d—-1)
= 442 +d[4(d— 12+ (d—l)f(d—z)]
=4d? +d[4d-1*+(d-1) [4d -2+ (d-2)f(d-3)]]
=4d* +4d(d - 1)> +4d(d - 1)(d - 2)* +...
+4dd—-1)(d—-2)-...-4-3-1?

_ d> (d-1? (d-2)?
_4d!(d!+ (d—l)!+ d—2)l +>

=0(d)

. i .
since Zizl T isa constant.
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Complexity

LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x = 0?
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Complexity

LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x = 0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.
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Complexity

LP Feasibility Problem (LP feasibility)
» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x =0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.

Is this problem in NP or even in P?
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The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal) 1+ 1

» Let for an m x n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [logy(Im;j])]
i.j
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is ©(L([A|b])).



> In the following we sometimes refer to L := L([A|b]) as the
input size (even though the real input size is something in
O(L([AlP]))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L([A[|b])).

T
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Suppose that Ax = b; x = 0 is feasible.
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Suppose that Ax = b; x = 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xg = Aglb

and all other entries in x are O.
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Size of a Basic Feasible Solution

Lemma 26

Let M € 7"™ be agn invertable matrix and let b € 7™. Further
define I’ = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components xj of the form %, where |D;| < 2L and
ID| < 2L,
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Size of a Basic Feasible Solution

Lemma 26

Let M € 7"™ be agn invertable matrix and let b € 7™. Further
define I’ = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components xj of the form %, where |D;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

det(Mj)

Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Bounding the Determinant

Let X = Ap. Then

|det(X)|
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Let X = Ag. Then

|det(X)| > 11 sen(mXina
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Bounding the Determinant

Let X = Ap. Then

|det(X)|

> 11 sen(mXina

TESy 1<i<n

> I Xinw!

mesy 1<i<n

IA

m EADS Il 8 Seidels LP-algorithm
©Harald Racke



Bounding the Determinant

Let X = Ap. Then

|det(X)|

> 1 sgn(m)Xima

TESy 1<i<n

> I Xinw!

mesy 1<i<n
< n! . 2L(LAIP])

IA
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Bounding the Determinant

Let X = Ap. Then

|det(X)|

> 1 sgn(m)Xima

TESy 1<i<n

> I Xinw!

mesy 1<i<n

<l - 2LUAIPD < ynpl

IA
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Bounding the Determinant

Let X = Ap. Then

|det(X)|

> 1 sgn(m)Xima

TESy 1<i<n

> I Xinw!

mesy 1<i<n

IA

< n! . 2LUAIDD o ynpl < oL"
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Bounding the Determinant

Let X = Ag. Then

|det(X)|

> 11 sen(m)Xina

TESy 1<i<n

> I Xinw!

mesy 1<i<n

IA

< n! . 2LUAIDD o ynpl < oL"

Analogously for det(M;).
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This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.
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This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.
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This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.
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feasibility in polynomial time.

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke



This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

Hence, LP feasibility is in NP.
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Reducing LP-solving to LP decision.

Given an LP max{cix | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint ctx — 6 = M; 6 = 0 or (ctx > M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
10g2 (W) =0(") ’

as the range of the search is at most —n22L", ... n22L" and the
distance between two adjacent values is at least m > 2%
Here we use L' = L([A | b | c]) + nlog, n (it also includes the
encoding size of ¢).
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How do we detect whether the LP is unbounded?

Let Mmax = n2%L" be an upper bound on the objective value of a
basic feasible solution.
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How do we detect whether the LP is unbounded?

Let Mmax = n2%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ctx > Mpax + 1 and check for feasibility.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).
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node z. H denotes half-
space that contains K.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke



Ellipsoid Method

>

>

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

Compute (smallest)
ellipsoid E’ that
contains K N H.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 27
A mapping f : R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 28
A ball in R™ with center ¢ and radius 7 is given by

B(c,r) ={x | (x —c)i(x—-c) <7r?}
={x|>(x-0)2/r* =<1}

B(0,1) is called the unit ball.
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Definition 29
An affine transformation of the unit ball is called an ellipsoid.
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From f(x) = Lx +t follows x = L7} (f(x) — t).
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Definition 29
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1))
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Definition 29

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

S(B(0,1)) = {f(x) | x € B(O, )}
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Definition 29

An affine transformation of the unit ball is called an ellipsoid.
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Definition 29

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L Yy -t)eB(0,1)}

—{yeR" | (y-DIL VL Y y-—1t)<1}
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Definition 29

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L ' (y-t)eB(0,1)}
—{yeR" | (y - VL Ny —1) <1}
={yeR"| (y-'Q 1 (y—-t)<1}
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Definition 29

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L ' (y-t)eB(0,1)}

—{yeR" | (y-DIL VL Y y-—1t)<1}
={yeR" | (y-HiQ Ny -t)<1}

where Q = LL! is an invertible matrix.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke



How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x;. Hence,

¢ =tej fort > 0.
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The Easy Case

» The new center lies on axis x1. Hence, ¢’ = teg fort > 0.
» The vectors ey, e,... have to fulﬁlll the ellipsoid constraint
with equality. Hence (e; — é)1Q" "(e; — ¢') = 1.
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The Easy Case

. .ooa,—1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.
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The Easy Case

. .ooa,—1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.

> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.
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The Easy Case

> The obtain the matrix O’ for our ellipsoid £’ note that £’

is axis-parallel.

Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

The matrix
a 0
- 0O b
L' = _
: . . 0
0O ... 0 b

maps the unit ball (via function f'(x) = L'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.

T
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The Easy Case

>A5Q’:

L

7

L

t oA
" the matrix Q'

~!is of the form
50 0
) 0
0 0 &

T
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The Easy Case

> (e1 — 5')tQ'_1(e1 —¢') =1 gives

» This gives (1 —t)2 = a?.

©Harald Racke

9 The Ellipsoid Algorithm



The Easy Case

. . g Al o .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t
1 1
o L
0 b2 0
A .0
: ) :
0 0 ... 0 4= 0
» This gives ;—22 + # =1, and hence
1 t?
p-l e
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The Easy Case

. . g Al o .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t

-t 1 —t
1 a 0 0 1
o L
0 b? 0 =1
D 0
: ) :
0 0 0 32 0
» This gives ;—22 + # =1, and hence
1,8,
b2 a? (1-1t)2
P -

EADS Il
©Harald Racke
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The Easy Case

. . g Al .
» For i # 1 the equation (e; — ¢")!Q" (e; — ¢’) = 1 gives

t
-t 1 —t
) 2 0 ... 0 .
0 &
0 b2 0 =1
: .0
: ) :
0 0 ... 0 4= 0
> This gives;—i+#=1,and hence
i—1—£—1— 2 1-2t
b2~ a2 T (1-1H2 (1-1t)?

.
9 The Ellipsoid Algorithm
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Summary

So far we have

a=1-t and b=

1-t
V1 -2t

©Harald Racke
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The Easy Case

We still have many choices for ¢:
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimall!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimall!!
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The Easy Case

We want to choose t such that the volume of E’ is minimal.
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The Easy Case

We want to choose t such that the volume of E’ is minimal.

Lemma 30
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .
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n-dimensional volume
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E") = vol(B(0,1)) - |det(L))] ,

where O’ = 11",
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The Easy Case
» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where Q' = i/1"".

» We have
1
0 0 a 0
1. A
Pt o O b " land L’ =
0 0 3 0 0 b
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The Easy Case
» We want to choose t such that the volume of E’ is minimal.

vol(E") = vol(B(0,1)) - |det(L))] ,

where Q' = i/1"".

» We have
1
0 0 a 0 0
1 - :
n = S . b
Pt o O b and L' =
0 ... 0 % 0 ... 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E")

©Harald Racke
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 =¢) - (

1-t
VI-2t

-
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 =¢) - (

1-t
V1 -2t

a-on"

=vol(B(0,1))

S (VI-2p)nt

-

©Harald Racke
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The Easy Case

dvol(E")
dt
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The Easy Case

dvol(E")
dt

_i<
S dt

a1-on" )
(V1T =201
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The Easy Case

dvol(E")
dt

_i(
S dt

1
=

1-on )
(V1T =201

©Harald Racke
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The Easy Case

dvol(E"’)

dt ((\/(17_”)7; 1)

g( 1) -n(1-t)n !

derivative of numerator |

Z‘»—l Q‘“Q-
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The Easy Case

dvol(E"’)
dt

Z‘»—l Q‘“Q-

i

a1-on"
rz)

(( D-n(1-6)" 1.

1-2t)n!

denominator

©Harald Racke
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The Easy Case

dt

z

(V1 =201
(( 1)-n(1-t)"1. 1-2t)n!

dvol(E) _di< (1-o" )
i

n-1)H1-2t)"2

outer derivative

©Harald Racke
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The Easy Case

dt (/ )nl

dvol(E") d (1- t)"
S a ()
=i (( D-n1-0"1 (1-20)"!

N2

1
—m-DW1-20)" 2 (=2
(= DET=20"2 e (-2)
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The Easy Case

dt

(V1T =201
(( 1) -n1-tH" . 1-2t)"1

dvol(E") _dg< (1-t)" )
L

N?
1
~(n-1)H1-20)""2" (=2)-(1-D)"
avi-at
9 The Ellipsoid Algorithm =] =
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The Easy Case

dt (/ )nl

dvol(E") d (1-t)"
S a ()
=i (( D-n1-0"1 (1-20)"!

z

—(n-1)K1-2t)"2. zﬁ (=2)-(1- t)">

1 n— n-—
=W-(\/1—2t) .-t
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The Easy Case

dt

z

dvol(E) _di< (l—t)" )
i

( 20t 1-2t
(( ) -nd-t" . (2!

n-1)H1-2t)"2. 1 (=2)-(1- t)">

21 -2t

1 n— n-—
=yz (i-2t) 5.1 -t

©Harald Racke
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The Easy Case

at /1=26m 1-2t
= (( 1 -n1-pr . (A2t

(- AL (-2) - t)”)
1 n- n-
=W-(\/1—2t) 51—t

dvol(E) _di< (1-o" )
L

z
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The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

(- AL (-2) - t)”)
1 n- n-
=W-(\/1—2t) 51—t

dvol(E) _di< (l—t)" )
L

Z
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The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

1-t
~(n- AL %-(—Z)u/rrf)
1 n- n-
=W-(\/1—2t) S.(1-pnt

dvol(E) _di< (l—t)" )
L

Z
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The Easy Case

dvol(E")
dt

- 3t (Gr=1)
d ( )‘ﬂl 1-2t
- L. (( 1) - (87T . (JJT—2r=T

Z

1-t
(n—1)(1—217772 . M (27 - W)

= ﬁ C(W1-20"3 (1 -t

©Harald Racke

9 The Ellipsoid Algorithm & =



The Easy Case

dt (/I-2pm 1-2t
(( 1) - n(d—"T. (1201

dvol(E) _di< (l—t)" )
L

Z

1-t

= ﬁ S(W1-20)" (1 - !

. ((n— DA-t)-n( - Zt))
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The Easy Case

dt (V=20 1-2t
(( 1) - n(d—"T. (1201

dvol(E) _di< (l—t)" )
L

2

1-t

= ﬁ S(W1-20)" (1 - !
: ((n— (1 -t)-n(l - Zt))

=— - 1—2t)"—3-(1—t)"—1-((n+1)t—1)
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t=—"andb=
n+1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a=l-t= -7an -2t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n

n 1-t
a—l—t—n+1andb— =7 =

n2 -1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a—l—t—n+1andb— =7

To see the equation for b, observe that

bZ

n2 -1
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» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
a—l—t—n+1andb— =7

To see the equation for b, observe that

(1 -t)?

2 _
b® = 1-2t

n2 -1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain
1-t

a=1-t=—"andb=
n

1 1-2t

To see the equation for b, observe that

(1-1)?2 (1—m)2
1-2t

b* =

1_n+1

n2 -1
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The Easy Case

» We obtain the minimum for t = P

» For this value we obtain

b* =

n 1-t n
=1-t= and b =
a n+l T-2t JnZ-1
To see the equation for b, observe that
(1-1)? _ (1_n+1)2 (n+1)2
_ = -1
-2t 11— sy
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
a n+l T-2t JnZ-1
To see the equation for b, observe that
b2 = (1-1)° _ (1_n+1)2 (n+1)2 _ n?
1 - Zt 1 - = L71 nz — 1
n+l n+1
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The Easy Case

vol(E")

Let yn = o1B(0.1)

changes:

; = ab""! be the ratio by which the volume
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume
changes:
2 -
2 n 2 n n-1
vi= (1) G 1)
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The Easy Case

Let yn = #@:i)) = ab™"! be the ratio by which the volume

changes:

2 2 -1
Yn = (nf 7) <n2‘n— 1>n

1 2
(- 7) U )

n-1

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke



The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1

2 2 -1
Yn = (nz 1> <n2n— 1)”
(1

2
1) O )
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1

S
+
p—
S~~—"
no
—~
—
+
S
|
—_
S
+
—
S~—

where we used (1 + x)% < e** forx €e Rand a > 0.
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The Easy Case

Let yn = #f;i)) = ab™"! be the ratio by which the volume

changes:

n-1

S
+
p—
S~~—"
no
—~
—
+
S
|
—_
S
+
—
S~—

where we used (1 + x)% < e** forx €e Rand a > 0.

1
This gives y, < e 2m+D),
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How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

A}
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.
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Our progress is the same:

e_ 2n+1)
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Our progress is the same:

1 vol(E")

e_Z(n+l) >

~ vol(B(0,1))
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1 vol(E')  vol(E)

e 2m+D) > =

~ vol(B(0,1))  vol(E)
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Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e 2m+D) > =

~ vol(B(0,1))  vol(E)  vol(R(E))
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Our progress is the same:

R vol(E") _ Vol(E"A’) _ Vol(R(E:’))
~ vol(B(0,1))  vol(E)  vol(R(E))
_ Vol(E")
"~ vol(E)
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Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e 2m+D)

%

vol(B(0,1)) ~ vol(E)  vol(R(E))
vol(E')  vol(f(E"))
vol(E)  vol(f(E))
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Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e_ 2(n+1)

%

vol(B(0,1))  vol(E)  vol(R(E))
vol(E")  vol(f(E'))  vol(E')
vol(E) ~ vol(f(E))  vol(E)
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Our progress is the same:

! vol(E')  vol(E)) _ vol(R(E"))

e 2(m+D)

%

vol(B(0,1))  vol(E)  vol(R(E))
vol(E")  vol(f(E'))  vol(E')
vol(E) ~ vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx +t changes the volume by factor det(L).
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How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;
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How to Compute The New Parameters?
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The halfspace to be intersected: H = {x | at(x — ¢) < 0};
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | at(x — ¢) < 0};

FUH) = {f 1) | al(x —¢) < 0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};

FUH) = {f 1) | al(x —¢) < 0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
FUHH) = {f1(x) [ al(x - ¢) <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
fHH) = {710 Tat(x —¢) < 03
= {1 al(f(y)—c) <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
STHH) = {f 1) T al(x —¢) < 0}
={f 'f) la(f(y)-c) <0}
={yla'(f(y)-c) <0}

={yla(Ly +c—-c) <0}
={y|(a'l)y <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | at(x — ¢) < 0};
STHH) = {f 1) T al(x —¢) < 0}
={f 'f) la(f(y)-c) <0}
={yla'(f(y)-c) <0}

={yla(Ly +c—-c) <0}
={y|(a'l)y <0}

This means a = Lta.
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

_1( Lta ): Lta R-e

—e —_ =
ILtall ! ILtal
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lta Lta
-1
=—e] ————=R-e1
(IILtaH) ILta|l
Hence,
’ r 1
¢ =R-C = 1
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
R1 — e ~ -2 _R.e
(||Lta||> L7 TlLta !
Hence,
, o 1 1 ILta
7 =R-¢ =R - - - =%
¢ ¢ n+19 T Tl Ltal
¢ =f(@)=L-¢ +c



The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
-1
=—e —-———=R-e
(||Lta||> ! ILtal !
Hence,
, o 1 1 ILta
7 =R-¢" =R - - - =7
¢ ¢ n+19 T Tl Ltal

o
Il

"= f@@)=L-¢ +c

= — 1 LLta +c
 m+1|Ltall




The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x-direction. Hence,

Lia Lta
-1
=—e —-———=R-e
(||Lta||> ! ILtal !
Hence,
, o 1 1 ILta
7 =R-¢" =R - - - =7
¢ ¢ n+19 T Tl Ltal

o
Il

"= f@)=L-¢ +c
1 Lta
= - L +c
n+1 |Ltall

1 Qa

n+1 /atQa




For computing the matrix Q' of the new ellipsoid we assume in
the following that E’, E’ and E’ refer to the ellispoids centered in
the origin.
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Recall that

a? 0 0

N R
ST
0 0 b2

This gives
~, n? 2
Q (I 1€§>

T n2-1 _n+1e

because for a = n/n+1 and b = n/\/n2-1

w22 _ n? 2n?

n+1 n2-1 m-1n+1)2

n*(n+1) -2n? n’(n-1) )
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9 The Ellipsoid Algorithm

E' =R(E")
= (R(x) | xt0 'x <1}
- RO TRy <1
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9 The Ellipsoid Algorithm

E' = R(E")
—R(x) | x1Q 'x <1}
-y | RO TRy <1
= [y [y'®RH QTR Yy < 1)
={y | Y"(RQ'RH 1y <1}
I
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9 The Ellipsoid Algorithm

Hence,
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Hence,
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9 The Ellipsoid Algorithm

Hence,
Q' = RQ'R'
n? 2

=R. I-— t _Rt
n2—1( n+1e1e1>
2

__n t 2 t

= oq (R = (ReDRe))
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9 The Ellipsoid Algorithm

Hence,

2
n (I— 2
n2-1 n+1
n2

ele{> - R?

2
- (R-R' = (Re1)(Re1)")

n2 -1
. n? ( 2 LtaatL>
T n2-1 n+1|Ltal?
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9 The Ellipsoid Algorithm
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= {Lx) | xtQ" 'x <1}
@ T Ly <13

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm

E' =L(E)
= {Lx) | xtQ" 'x <1}
@ T Ly <13
= {yIytah QL y <13
={y | y"LQ'LH 'y =1}
o
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9 The Ellipsoid Algorithm

Hence,
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Hence,
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9 The Ellipsoid Algorithm

Hence,
Q =LQ'L!
2 £t
_I. n (_ 2 LaaL)_t
n2 -1 n+1 atQa
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9 The Ellipsoid Algorithm

Hence,
Ql — LQILt
. n? ( 2 L'aa'l
n2 -1 n+1 atQa
(Q— 2 QaatQ>
n2 -1 n+1 atQa

)

t
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1
8: C < C— Qa
2 t
n 2 Qaa'Q
9: — =
Q n2—1<Q n+1 ana>
10: endif
11: until 77?7

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 31

LetP = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be
the maximum encoding length of an entry in A. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n{amax)+nlogan
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Repeat: Size of basic solutions

Lemma 31

LetP = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be
the maximum encoding length of an entry in A. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n{amax)+nlogan

In the following we use § := 2"{amax}+nlogyn

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.
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Repeat: Size of basic solutions

Proof:

_ A b
Let A = [—A Im}, b= (—b)’ be the matrix and right-hand

vector after transforming the system to standard form.

The determinant of the matrices Ag and Mj (matrix obt. when
replacing the j-th column of Ag by b) can become at most

det(Ap), det(M;) < [[fmax]™
< (V- 2lamax))n < pnldmax)+nlogn

where imax is the longest column-vector that can be obtained
after deleting all but n rows and columns from A.

This holds because columns from I, selected when going from
A to A do not increase the determinant. Only the at most n
columns from matrices A and —A that A consists of contribute.



How do we find the first ellipsoid?
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.
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For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < 6.
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How do we find the first ellipsoid?
For feasibility checking we can assume that the polytop P is
bounded.
In this case every entry x; in a basic solution fulfills |x;| < 6.

Hence, P is contained in the cube -6 < x; < 6.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"B(0,1) < (nd6)"B(0,1).
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When can we terminate?

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



When can we terminate?

LetP:={x | Ax < b} withAeZand b € Z be a bounded
polytop. Let {(amax) be the encoding length of the largest entry
in A orb.

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke



When can we terminate?

LetP:={x | Ax < b} withAeZand b € Z be a bounded
polytop. Let {(amax) be the encoding length of the largest entry
in A orb.

Consider the following polytope

1

PA::{xlesb+21\ : },
1

where A = 62 + 1.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke



Lemma 32
P, is feasible if and only if P is feasible.
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Lemma 32
P, is feasible if and only if P is feasible.

«<: obvious!
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Consider the polytops

p=lx [_AA zm]x - (2,)x=0]

and
A b !
P;\z{xl[_AIm}x=<_b>+; : ;XZO}.
1

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.
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Consider the polytops

p=lx [_AA zm]x - (2,)x=0]

and
_ A b
P;\z{xl[_AIm}x=<_b>+; : ;sz}.
1

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

P, is bounded since P, and P are bounded.



_ A _ b
Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution

represented by
1

1.
xp = Aglh + XAgl

(The other x-values are zero)
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Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution
represented by

1.
xp = Aglh + XAgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.



_ A _ b
Let A = [_Alm]andb: (—b)'

P, feasible implies that there is a basic feasible solution
represented by

1.
xp = Aglh + XAgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Aglb); <0 < (Aglhb); + %(Agli)i



By Cramers rule we get

1

A-1liy. ALy, &
(Ag'D)i <0 = (Ag'B)i < — s

and
(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.
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By Cramers rule we get

1

(Al_;lb)l <0 = (Aglb)l < —m

and
(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.

However, we showed that the determinants of Ag and Mj can
become at most §.
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By Cramers rule we get

- . 1
(ABlb)i<0 B (ABlb)iS—m
and

(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by 1.

However, we showed that the determinants of Ag and Mj can
become at most §.

Since, we chose A = 62 + 1 this gives a contradiction.
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = 6%V01(B(O, 1)).
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = 6%V01(B(0, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Alx +€));
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(A(x +£)); = (Ax); + (AD);
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
< b+ Al - 1]
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
<bi+ Al - 1] < by + v - 20@max) Ly
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
<bi+ Al - 1] < by + v - 20@max) Ly

\/ﬁ . 2(amax>

<b;+ 53
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Lemma 33
If P\ is feasible then it contains a ball of radius v := 1/53. This
has a volume of at least ¥"vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0)); = (Ax); + (Al); < b; + Al
<bi+ Al - 1] < by + v - 20@max) Ly

ﬁ . 2(amax> . 1 1

<b;+ 53 =
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Lemma 33
If Py is feasible then it contains a ball of radius v := 1/683. This
has a volume of at least v"'vol(B(0,1) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||| < ». Then

(Ax +0))i = (Ax); + (AD); < b; + Al
< b; + Al - ||€7|| < b; + ym - 2famad Ly

ﬁ . 2(amax> <h 1 1

<b;+ 53 =

Hence, x + U is feasible for Py which proves the lemma.
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How many iterations do we need until the volume becomes too
small?
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How many iterations do we need until the volume becomes too
small?

o T vol(B(0,R)) < vol(B(0,7))
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How many iterations do we need until the volume becomes too
small?

e~ 2@ - vol(B(0,R)) < vol(B(0,7))

Hence,
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How many iterations do we need until the volume becomes too
small?

e ~ 3D - vol(B(0,R)) < vol(B(0,7))

Hence,

vol(B(0,R)) )

i>2(n+ 1)1n(v01(3<0,r>>
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How many iterations do we need until the volume becomes too
small?

e ~ 3D - vol(B(0,R)) < vol(B(0,7))

Hence,

vol(B(0,R)) )
vol(B(0,7))

=2(n+-n1n(n”5"-5*ﬂ

i>un+nm(
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How many iterations do we need until the volume becomes too
small?

PRy - vol(B(0,R)) < vol(B(0,7))
Hence,

vol(B(0,R)) )
vol(B(0,7))
=2(n+-n1n(n"5"-5*ﬁ

=8nn+1)In(d) + 2(n + 1)nln(n)

i>mn+nm(

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke



How many iterations do we need until the volume becomes too
small?

PRy - vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2(n+1)In(n"s" - 5°")
=8n(n+1)In(d) + 2(n + 1)nln(n)
= O(poly(n, (amax)))

i>2(n+1)ln(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R", radii R and »
2 with K € B(O,R), and B(x,7r) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5:¢c <0

6: repeat

7 if c € K then return c

8 else

9 choose a violated hyperplane a

1
10: C < C— Qa
n+1 atQa
n? 2 QaalQ
1 Q‘_nz—l(Q_nJrl atQa)
12: endif

13: until det(Q) < 72" // i.e., det(L) < +"
14: return “K is empty”




Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
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algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

» a guarantee that a ball of radius 7 is contained in K,
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,

> a separation oracle for K.
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Separation Oracle:
Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c,R) with radius R that contains K,
» a separation oracle for K.

The Ellipsoid algorithm requires O (poly(n) - log(R /7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.
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10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A ={x e R" | elx =1,x = 0} with el = (1,...

denotes the standard simplex in R™.

1)
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10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.
Further assumptions:
1. Ais an m X n-matrix with rank m.
P -
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We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.
Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.
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10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = cfx subject to Ax = 0 and x € A.

» Here A={x eR" |elx =1,x =0} withef =(1,...,1)
denotes the standard simplex in R™.

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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Suppose you start with max{ctx | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem
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» Add a new variable pair xyp, x,’,; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex
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Add —(3; x;)b; = —b; to every constraint. = vector b is 0
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10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, xé; (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>; x;)b; = —b; to every constraint. = vector b is 0

If A does not have full column rank we can delete
constraints (or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.



10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x(0 =2 xW x@) . with

Ctxk < 2—®(L)Ctx0

For k = ®(L). A point x is strictly feasible if x > 0.
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10 Karmarkars Algorithm

The algorithm computes (strictly) feasible interior points
x(0 =2 xW x@) . with

ctxk < 2-0(L) o0
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction c onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.

T
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10K

armarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction c onto the feasible

region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

4

X .

T
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define ;

Y-1x
-
etY-lx
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define .
Y 'x
Fz:x =
* etY-1x
The inverse function is
Yx
F?l X — —
X etYx
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

Define .
Y 'x
Fy:ixv— ———— .
* etY-1x
The inverse function is
Yx
Fzligx —» —— .
X etYx

Note that x > O in every coordinate. Therefore the above is well
defined.
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Properties

Fz! really is the inverse of Fx:

Y71 Yx %
1. YR -
F;‘c(F;‘cl(X)) = ﬁ = olx =X
ety etyx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.
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Properties

X is mapped to e/n

©Harald Racke
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Properties

A unit vectors e; is mapped to itself:

_— _ t
Fe(e;) = Y~te;  (0,...,0,%;0,...,0)

etY-le; — e!(0,...,0,%;,0,...,0)t
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Properties

All nodes of the simplex are mapped to the simplex:

t
X1 X1 Xn
i (3 --’xn) (&%)
2 (x) = 5o = =i €A
e X tx1 Xn Zl_
e X R Xi
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The Transformation

Easy to check:

> F;l really is the inverse of Fx.
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The Transformation

Easy to check:
> F;l really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.
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The Transformation

Easy to check:

v

F;l really is the inverse of Fx.
> X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.
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10 Karmarkars Algorithm

After the transformation we have the problem

min{c'Fz1(x) | AFz1(x) = 0; x € A}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).
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10 Karmarkars Algorithm

After the transformation we have the problem

min{c'Fz!(x) | AFz'(x) = 0; x € A}

B mjn{eth

Ieth=O;xe

cl'Yx  AYx A}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).
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10 Karmarkars Algorithm

After the transformation we have the problem
min{c'Fz!(x) | AFz'(x) = 0; x € A}
I {cth | AYx
h elYx ' elYx

=O;xeA}

This holds since the back-transformation “reaches” every point in
A (i.e. Fz1(A) = A).

Since the optimum solution is O this problem is the same as
min{éfx | Ax = 0,x € A}

with ¢ = Yic = Yc and A = AY.
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We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.

» Apply F&, and solve
min{é'x | Ax = 0; x € A}

» The feasible point is moved to the center.

T
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).
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When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}
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10 Karmarkars Algorithm

When computing X we do not want to leave the simplex or touch
its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b() = frem o] =0}

We are looking for the largest radius 7 such that

B(%,r) m{xletx=1} c A.
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10 Karmarkars Algorithm

This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)
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10 Karmarkars Algorithm

This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

This gives v =
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10 Karmarkars Algorithm

This holds for v = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives v =

min{éix | Ax = 0,x € B(e/n,r) N A}
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The Simplex

X3
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10 Karmarkars Algorithm
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10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax =0 or the
constraint x € A.
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax =0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

r-(0)
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10 Karmarkars Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of
A
o~ (2]

P=1-BYBBY) !B

We use

Then
d =Pé

is the required projection.
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10 Karmarkars Algorithm

We get the new point

forp <.
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10 Karmarkars Algorithm

We get the new point

forp <.

Choose p = oxr with x = 1/4.
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10 Karmarkars Algorithm

Iteration of Karmarkars algorithm:

» Current solution x. Y := diag(x1,...,Xn).
» Transform the problem via Fx(x) = % Let ¢ = Yc, and
A=AY.
» Compute
d = (I-BYBB") 'B)¢ ,
A
where B = ( t).
e
> Set
g=f_p, 4
n ldll

with p = ar withx=1/4andr = 1/yn(n —1).
» Compute Xpew = F5 1 (X).
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The Simplex

X3

©Harald Racke
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Lemma 34
The new point X in the transformed space is the point that
minimizes the cost ¢tx among all feasible points in B(%, p).
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Proof: Let z be another feasible point in B(%,p).
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0,elz=1,elx =1
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have

Further,
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have

Further,
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have
B(x-2z)=0.
Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have
B(x-2z)=0.
Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
— "tBt(BBt)—lB
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have
B(x-2z)=0.
Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
— "tBt(BBt)—lB

Hence, we get

E-d'(x-2)=0
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Proof: Let z be another feasible point in B(%,p).

As Az =0, A% =0,elz =1, e!%X = 1 we have
B(x—-2z)=0.

Further,

(6 —d)t =(-Pé)t
= (BY(BBY)"lB¢)t
= ¢tBY(BBY)"1B

Hence, we get

E-d)li(x-2z)=00rét(x-—2z)=d(x-2)
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Proof: Let z be another feasible point in B(%,p).

As Az =0,A%x =0, elz=1, e!x =1 we have

Further,
(e-d)t=(c-po)
= (B'(BB")"'B¢)!
— "tBt(BBt)—lB
Hence, we get

E-d)li(x-2z)=00rét(x-—2z)=d(x-2)

which means that the cost-difference between X and z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.
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But

dt

A s
lall

z)

dt
~lldl

(

g_p:L_z>
n Uldl

T
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But

T

A e _dt(e_pd_z) _dt(e_z)_p
ldll ldll \n " lidll Idll \n
EADS Il 10 Karmarkars Algorithm & E
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But

A e _dt(e_pd_z) _dt(e_z)_p<0
Il dl \n ~ Fldll ldl \n

as % — z is a vector of length at most p.
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But

A e _dt(e_ L_Z) _dt(e_z)_ <0
Id] "l \n " Plan %) Tl \n g
as % — z is a vector of length at most p.
This gives d(X — z) < 0 and therefore éX < ¢z.
& - =
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In order to measure the progress of the algorithm we introduce
a potential function f:

S(x)

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke



In order to measure the progress of the algorithm we introduce
a potential function f:

t
) =YY
PR
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
Fex) = () = nin(ex) - YIn(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c!x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).
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For a point z in the transformed space we use the potential
function

f(2)

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke



For a point z in the transformed space we use the potential
function

f(2) = f(Fz'(2))
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For a point z in the transformed space we use the potential
function

Yz
elYz

f(z2):= f(FZH(2) = f( ) = f(Yz)
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For a point z in the transformed space we use the potential
function

f(2) = fF(Fz1(2)) = f(——e

—21 (c Yz

) = f(Yz)

eth
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For a point z in the transformed space we use the potential
function
A 1 _ .
f(2):=f(F; (2)) f(esz) f(Yz)

—21 (C YZ)—Zl —)—zlnxj
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For a point z in the transformed space we use the potential
function

f(2):= fFFEY(2) = f(o-) = f(Y2)

eth

.
=Zln(;Z?)=Zl (—)—Zlnxj
i NE

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke



For a point z in the transformed space we use the potential
function

Fz) = f(F-‘l(z)) - f(Y—-Z) - f(Y2)
Zl (—) —zlnxJ

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(=) -6,

e
n

where 6 is a constant.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f& <f(=) -6,

e
n
where 6 is a constant.

This gives
S (Xnew) < f(x) -6 .
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Lemma 35
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

P L e
f(z)sf(ﬁ)—é

with 6 = In(1 + ).
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Lemma 35
There is a feasible point z (i.e., Az = 0) in B(%,p) N A that has

- ~e
f(2) Sf(ﬁ) -0
with 6 = In(1 + ).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + X)

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke



Let z* be the feasible point in the transformed space where éfx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).
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Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely
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Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast X is the point in the
intersection of the feasible region and B(%, p) that minimizes
this function; in general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0< Az
n

for some positive A < 1.
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Hence,

. 4l
¢lz=(1- A)cta +Actz*

T
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Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.
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Hence,

flz=(1- A)ét% +Aétz*

The optimum cost (at z*) is zero.

Therefore,
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The improvement in the potential function is

f(%) - f(2)
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The improvement in the potential function is

C

te otz
f(—)—f(z)—Zln( ) = XI5
i J

n
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T

The improvement in the potential function is

éte ctz
f(*)—f(Z)—Zln( ) — > In(—=

n
fte
n

= Zln(

¢tz

SIEIRN
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The improvement in the potential function is

cty ¢tz
F&) - f@ = 21n< )-S5
i J

Zj
- Zln( étZ 1)
n

= gln(ﬁzj)
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The improvement in the potential function is

A e Ate ctz
f(ﬁ)— f(z) = Zln( 1 Zln(z)
t
—Zln(ét TJ

= %m(ﬁzj)

- Zln(%((l —)\)% +Az$))
J
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T

The improvement in the potential function is

e cte étz
f(;i)—xf(z) EZIn( E;ln(igf)

fte
n

A

—Zhu -f
=%m%ijz

—Zmﬁ%%ﬂl—M%+AzD
j

=>1In(1+
J

*
1A%
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We can use the fact that for non-negative s;

>, In(1 +5;) = In(1 + 3;50)
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We can use the fact that for non-negative s;

> In(1 + ;) = In(1 + X;59)

This gives

A e ~
f(ﬁ) —f(Z)
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We can use the fact that for non-negative s;

Zi In(1 +s;) =In(1 +>;s;)

This gives

na 2

~ e ~
FCY-f2) = gln(n 2]
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We can use the fact that for non-negative s;

Zi In(1 +s;) =In(1 +>;s;)

This gives
naA
-A

~ e ~
fe) - 1@ = %1n(1+ 2

A

n
zln(1+1_A
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In order to get further we need a bound on A:

Xr
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In order to get further we need a bound on A:

o =p
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In order to get further we need a bound on A:

ar =p =z —e/n|
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In order to get further we need a bound on A:

ar =p =llz—e¢/n| = A" —e/n)|
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In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR
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In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R=+y(n-1)/n.
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R =+ (n-1)/n.Sincer =1/./mn-1)n we have R/r = n — 1 and

A=>ax/(n-1)
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
1 +nL
1-A
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+n1—2\21+7n—(x—1
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+7’l1_A21+m21+0(
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In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole

simplex.
R =+(n-1)/n.Since r =1/,/m-1)n we have R/ =n —1 and
A=>ax/(n-1)
Then
no
1+7’l1_A21+m21+0(

This gives the lemma.
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Lemma 36
If we choose « = 1/4 and n > 4 in Karmarkars algorithm the
point X satisfies

with 6 = 1/10.
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Proof:
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Proof:

Define

g(x) =

T
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Proof:

Define

étx
gx) = nlnét—g

T
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Proof:

Define

g(x)

~

c'X
nlnAt—e
T

. ;e
n(lnctx—lnctﬁ) .

T
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Proof:
Define

Ctx
Ate
c n

. ;e
n(lnctx—lnctﬁ) .

gx)=nln

This is the change in the cost part of the potential function when
going from the center % to the point x in the transformed space.
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Similar, the penalty when going from % to w increases by
h(w) =pen(w)—pen(— ->In TJ
J n

where pen(v) = -3 ;In(v}).
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We want to derive a lower bound on

a e PR
f(ﬁ)—f(x)
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We want to derive a lower bound on

~ e A ~ @ ~
f(ﬁ) - f(x) = [f(;) - f(2)]
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We want to derive a lower bound on

FE - fx) = [f‘(%) ~ f2)]

+h(z)

S e
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)
— h(x)
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We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)

- h(x)
+[g(z) —g(x)]

m EADS Il 10 Karmarkars Algorithm
©Harald Racke



We want to derive a lower bound on
A e A~ N _ A~ E _ A
f(ﬁ) -f(x) = [f(n) f(2)]
+ h(z)

- h(x)
+[g(z) —g(x)]

where z is the point in the ball where f achieves its minimum.
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We have

[f(%) ~f@1=In1+

by the previous lemma.
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We have

[F(£) - f(2)]=In( + )

n
by the previous lemma.

We have
[9(z) —g(x)] =0

since X is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).

2
This is at most Z(fi—ﬁ) with f = nar.
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For a point in the ball we have

fw) - (f(%) +g(w)h(w)

(The increase in penalty when going from % to w).

2
This is at most 2({;7—13) with f = nar.
Hence,

BZ

e ai
f(ﬁ)—f(x)zln(1+0()— T
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Lemma 37
For|x|<B <1

X2

|IIn(1 +x) — x| <

2(1-p)
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This gives for w € B(3;, p)

m EADS Il 10 Karmarkars Algorithm
©Harald Racke



This gives for w € B(

‘Zln

pP)

I/n+(w; —1/n)

‘zl ( 1/n

1
- %n(wj -
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This gives for w € B(5,p)

wj | I/n+(w; —1/n) B 1
‘Zlnl/n B Zl( 1/n ) %n(wj n)
<nar<l
= > ln(1+n(wj—1/n))—n(wj—%)

J
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This gives for w € B(5,p)

n°(w;
S% 2(1 — axnr)

1/n+ (w

i—1/n)

zl ( l/n

> In(1 + n(

J

2(wi—1/n)?

)—Zn(wj—%
j

=nar<l

— 1
wj—1/n)) -n(w; - n)]

©Harald Racke
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This gives for w € B(5,p)

I/n+(w; —1/n)
B zl ( 1/n )=

|zln1/n
<nar<l
> | In(1 +n(wj —1/n)) -
J
2(wi—1/n)?
J
S% 2(1 — axnr)

(onr)?
—2(1 — anr)

Zn(wj

1
n
n(w; — )]
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The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1
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The decrease in potential is therefore at least

BZ
1-8

In(1 + x) —

with B = noar = a1

It can be shown that this is at least % form =4 and x =1/4.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
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Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.
This gives
ctx®)

te
T

nln
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Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nln S5 Zln g Zln% ~k/10
j

< nlnn - k/10
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Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.

This gives
ctx®) _(k 1
nln e lenx;)—Zlnﬁ—k/lo
n J J

<nlnn-k/10
Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

e <e <27l
€'
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Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin € X < Zln g Zln% ~k/10
j
< nlnn— k/10

Choosing k = 10n (£ + Inn) with £ = ©(L) we get

ctx®

Tse_€52_g.
T

Hence, ®(nL) iterations are sufficient. One iteration can be
performed in time O(n3).
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