Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Parallel Algorithms

Due Date: January 29, 2013 before class!

Problem 1 (10 Points)

Given two families of graphs \mathcal{G} and \mathcal{H} and an embedding of any graph $G \in \mathcal{G}$ into some graph of \mathcal{H} with constant expansion, load, congestion, and dilation, show that any graph $G \in \mathcal{G}$ can be simulated by some graph in \mathcal{H} with constant slowdown and constant loss in efficiency.

Problem 2 (10 Points)

Show that the bounds in the Theorem about the flip-bit algorithm (Theorem 3.4. in Leighton's book) hold with probability $1 - N^{-\alpha}$ for any constant α .

Problem 3 (10 Points)

Show that the number of hypercube nodes with i 1s is at most $O(N/\sqrt{\log N})$ for any i.

Problem 4 (10 Points)

Given any deterministic algorithm for dynamically embedding an N-node binary tree in an N-node hypercube with load L, show that there is a way to grow a binary tree that will force the dilation of the embedding to be $\Omega(\sqrt{\log N}/L^2)$.