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Problem 1 (10 Points)
Recall the definition of the Landau notation for f, g : N→ N:

f = O(g) :⇐⇒ ∃c > 0∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ c · g(n),
f = Ω(g) :⇐⇒ g = O(f),
f = Θ(g) :⇐⇒ f = O(g) ∧ f = Ω(g),
f = o(g) :⇐⇒ ∀c > 0 ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ c · g(n),
f = ω(g) :⇐⇒ g = o(f).

Remark: Depending on the author, you will see the notations f = O(g) or f ∈ O(g),
respectively. Both notations are tolerated, just be consistent with yours!

(a) For strictly positive functions f, g, i.e. f(n), g(n) > 0 for all n ∈ N, show or disprove:

(i) f = Θ(g) if and only if there exist c1, c2 > 0 such that c1 ≤ f(n)
g(n)
≤ c2 for almost

all n ∈ N. (“almost all” is equivalent to “except for finitely many”).

(ii) f = o(g) if and only if limn→∞
f(n)
g(n)

= 0.

(b) Show that polynomial growth is dominated by exponential growth, i.e. for every
d > 0, b > 1 it holds that nd = o(bn).

(c) For each of the following pairs of functions f, g determine whether f = o(g), g = o(f)
or f = Θ(g).

(i) f(n) = n2, g(n) = 2n2 + 100
√
n,

(ii) f(n) = 1000n, g(n) = n log n,

(iii) f(n) = 22n+1
, g(n) = 22n ,

(iv) f(n) = nn, g(n) = 22n .

Problem 2 (10 Points)
Given an array A = A(1) . . . A(n) of n = 2k numbers, the task is to compute the sum
A(1) + · · ·+A(n). Briefly explain the algorithmic model you use for solving this problem
and give an example of an efficient parallel algorithm (and its running time) when using
a hypercube network.
What if your network has less than n processors?
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Problem 3 (10 Points)
Given an n-dimensional hypercube, find and prove the following:

(i) the number of vertices,

(ii) the number of edges,

(iii) the diameter,

(iv) the bisection width (the bisection width is the minimal number of edges which have
to be cut to create two networks with n/2 vertices each).

Problem 4 (10 Points)
Given a tree network, find a numbering of the vertices/gates, such that for every two
sibling vertices the number of their common parent vertex can be easily computed.
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