7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

UUU © Ernst Mayr, Harald Räcke	135

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

7.2 Red Black Trees Proof of Lemma 4. Induction on the height of v. base case (height(v) = 0) If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf. The black height of v is 0. The sub-tree rooted at v contains 0 = 2^{bh(v)} − 1 inner vertices.

7.2 Red Black Trees

137

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1}-1) + 1 \ge 2^{bh(v)} 1$ vertices.

139

```
EADS
©Ernst Mayr, Harald Räcke
```

7.2 Red Black Trees

7.2 Red Black Trees

Definition 5

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

to spe

141

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

EADS © Ernst Mayr, Harald Räcke 7.2 Red Black Trees

140

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Algorithm 10 InsertFix(z)				
1: while parent[z] \neq null and col[parent[z]] = red do				
2:	if parent[z] = left[gp[z]] then z in left	subtree of grandparent		
3:	$uncle \leftarrow right[grandparent[z]]$			
4:	if col[<i>uncle</i>] = red then	Case 1: uncle red		
5:	$\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$	ack;		
6:	$\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandpa}$	rent[z];		
7:	else	Case 2: uncle black		
8:	if $z = right[parent[z]]$ then	2a: <i>z</i> right child		
9:	$z \leftarrow p[z]$; LeftRotate(z);			
10:	$col[p[z]] \leftarrow black; col[gp[z]]$	← red;2b: <i>z</i> left child		
11:	RightRotate $(gp[z]);$			
12:	else same as then-clause but right and	l left exchanged		
13: CO	$pl(root[T]) \leftarrow black;$			

7.2 Red Black Trees

145

EADS © Ernst Mayr, Harald Räcke

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree
- Case $2b \rightarrow$ red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of *x* were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

EADS © Ernst Mayr, Harald Räcke	7.2 Red Black Trees	151

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

v ariant of the fix-up algorithm • the node <i>z</i> is black • if we "assign" a fake black unit to the edge from <i>z</i> to its
if we "assign" a fake black unit to the edge from z to its
parent then the black-height property is fulfilled
al: make rotations in such a way that you at some point can nove the fake black unit from the edge.

Case 2: Sibling is black with two black children

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 \rightarrow Case 4 \rightarrow red black tree
- Case 4 \rightarrow red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

EADS © Ernst Mayr, Harald Räcke	7.2 Red Black Trees
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke	

159

