6.2 Master Theorem

Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence .
T(n) = aT<E> +f(n) .
Case 1.
If f(n) = O (@D =€) then T(n) = O(nlosr),
Case 2.
If f(n) = O(nl°8@ logk n) then T(n) = O(N'°8r 2 1ogk ! n).
Case 3.

If f(n) = Q(n'o8(@+€y and for sufficiently large n
af(%) < cf(n) for some constant c < 1 then T(n) = O(f(n)).

1 Note that the cases do not cover all pos-

| sibilities.

© Ernst Mayr, Harald Racke

50

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b'e, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 51

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

6.2 Master Theorem

© Ernst Mayr, Harald Racke

52

6.2 Master Theorem

This gives
log, n—1

T(n) =nl8ra 4+ % aif(%))

i=0

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 53

Case 1. Now suppose that f(n) < cnlogra-€,

log, n—-1

T(n) _nlogba _ Z alf(%)
i=0

log, n—-1 ' log, a—€

<c > al(ﬁl)
i=0 b
log, n—-1
pilogpa—e) _ pei(plogya)y—i — bEia’i} — Cnlogh a—e Z (be)i
i=0

Cnlogha—E(belogbn _ 1)/(be -1)

_ Cnlogbafe(ne _ 1)/(b6 -1)

c log, a(.,€ €
= e noertmt = 1)/(nf)
be -1
Hence,
C
Tn) < ey @ = T(n) = O(nB9),
m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 54

Case 2. Now suppose that f(n) < cnlo8 4,

log, n—1 n
T(n) - nlogba _ Z atf(ﬁ)
i=0
log, n—-1 log, a
i E b
<c > a b
i=0
logy n—-1
=cnlo®ra 3
i=0

cnlog og, n

Hence,

T(n) = O(n'°%2log, n) l:> T(n) = O(n°82logn).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

55

Case 2. Now suppose that f(n) > cnlo8 4,

logp n—1 n
logp,a _
roo - nme =S atf(2)
i=0
log, n—-1 logs a
lﬁ b
>c > a =
i=0
logy n—1
=cnlo®ra 3
i=0

cnl°®r 4log, n

Hence,
T(n) = Q(n'°%2log, n) {:> T(n) = Q(n°%alogn).
m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 56

Case 2. Now suppose that f(n) < cn'°8 2 (log, (n))k.

log, n—-1 n
1 .
T(n) -nlo®a = % alf<ﬁ)
i=0
log, n—-1

~

scza

> ()™ (o (35))

0- !
n:bf:w:logbn} = cnlogva Z (logb<b))
=0

,_.

_ Cnlogha Z (#

i=0

— cnlogr aZ ikl ~ %gkﬂ

~ Cnlogb a pk+1 ‘ > Tn) = O(nlogbfllogk+l

n).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

57

Case 3. Now suppose that f(n) > dnl°8 4+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a'f(n/b') < ctf(n), where we assume that
n/b=1 > ng is still sufficiently large.

log, n—-1

T(n)-nl%&a =% aif(ﬁ)
i=0
log, n—-1
= > cif(n)+0omosne)
i=0
a<1:3fea =55 < k| =<7 f S+ omle

T(n) <0(f(n))

> T(n) = 0(f(n).|

6.2 Master Theorem

© Ernst Mayr, Harald Racke

58

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. ,900010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

59

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1011
10001
100010

method” for multiplying integers.

1

|

1 . .

, * Note that the intermediate num-
0 0 0 0 0 0 0 i bers that are generated can have

I

10001000 L_.-tmostm+ns2nbits =

10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

© Ernst Mayr, Harald Racke

6.2 Master Theorem

60

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2k, for some k.

B1 Bo ‘ X ‘ Ay Ao

Then it holds that

A=A;-22 + Apand B=B; - 27 + By

Hence,

A-B=AB; 2"+ (A;Bo + AoBy) - 22 + Ao - By

6.2 Master Theorem

© Ernst Mayr, Harald Racke

61

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B] =1 then O(1)

2: return ag - bg O(1)

3: split A into Ag and A; On)

4: split B into By and B; On)

5: Zo — mult(Ay, B1) T(%)

6: Z1 — mult(A, Bg) + mult(Ag, B1) 2T(%) + O(n)
7: Zo — mult(Agp, By) T(%)

8: return Zp - 2" + 7 - 27 + Zo On)

We get the following recurrence:

n
T(n) = 4T(§) +0Mn) .
m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 62

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
» Case 1: f(n) = O(nlogra-¢) T(n) = ©(n'ogra)
» Case 2: f(n) = O(nl°%ralogkn) T(n) = O(nlogra1ogh*! n)
> Case 3: f(n) = Q(n°® a7 T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?~€) = O(n'o8r a-¢€),

We get a running time of @(n?) for our algorithm.

= Not better then the “school method”.

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

63

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1By + ApBy =Zy =12
—r —
= (Ap + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if |[A] = |B| =1 then O(1)

2 return ag - by O(1)

3: split A into Ag and A; On)

4: split B into By and B, On)

5: Z> — mult(A,B1) T(%)

6: Zy — mult(Ag, Bg) T(%)

7: Z1 —mult(Ag+ A1,Bo+B1) — 2> — Z T(%)+(‘)(n)
8 return Zo - 2" + 7, - 2% + Zg O(n)

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 64

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T(§) +0n) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlo8a-c) T(n) = O(nlogra)
» Case 2: f(n) = @(nl°%alogkn) T(n) = O(nlo8ralogh! n)
» Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(n10g2 3) ~ @(nl.SQ)_

A huge improvement over the “school method”.

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

65

	Master Theorem

