Amortized Analysis

Definition 1

A data structure with operations $op_1(), \ldots, op_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurences of $op_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i t_i(n)$.

Introduce a potential for the data structure.

8.3 Fibonacci Heaps

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 336/604

Introduce a potential for the data structure.

• $\Phi(D_i)$ is the potential after the *i*-th operation.

8.3 Fibonacci Heaps

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 336/604

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

• Show that $\Phi(D_i) \ge \Phi(D_0)$.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

Show that
$$\Phi(D_i) \ge \Phi(D_0)$$
.

Then

$$\sum_{i=1}^k c_i$$

8.3 Fibonacci Heaps

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 336/604

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

Show that
$$\Phi(D_i) \ge \Phi(D_0)$$
.

Then

$$\sum_{i=1}^k c_i \leq \sum_{i+1}^k c_i + \Phi(D_k) - \Phi(D_0)$$

8.3 Fibonacci Heaps

◆ 個 ト ◆ 国 ト ◆ 国 ト 336/604

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 .

Show that
$$\Phi(D_i) \ge \Phi(D_0)$$
.

Then

$$\sum_{i=1}^{k} c_i \leq \sum_{i+1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Stack

- S. push()
- ▶ S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- ► *S*.pop(): cost 1.
- ► *S*. multipop(*k*): cost min{size, *k*} = *k*.

8.3 Fibonacci Heaps

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 337/604

Stack

- S. push()
- S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- S. pop(): cost 1.
- ► S. multipop(k): cost min{size, k} = k.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost:

 $\hat{G}_{push} = C_{push} + \Delta \Phi = 1 + 1 \le 2$...

S. pop(): cost:

 $\widehat{G}_{pop} = \widehat{G}_{pop} + \Delta \Phi = 1 - 1 \le 0$

S: multipop(k): cost

 $\hat{C}_{mp} = C_{mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$...

8.3 Fibonacci Heaps

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 338/604

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \le 0$$
 .

► S. multipop(k): cost

 $\hat{C}_{\rm mp} = C_{\rm mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

8.3 Fibonacci Heaps

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ 338/604

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \le 0$$
 .

▶ S. multipop(k): cost

 $\hat{C}_{\rm mp} = C_{\rm mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

8.3 Fibonacci Heaps

▲ ● ◆ ● ◆ ● ◆
338/604

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \leq 0$$
 .

S. multipop(k): cost

$$\hat{C}_{\rm mp} = C_{\rm mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$
.

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 338/604

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

$\hat{C}_{0-1}=C_{0-1}+\Delta\Phi=1+1\leq 2$

$\hat{G}_{1\rightarrow0}=G_{1\rightarrow0}+\Delta\Phi=1-1\leq0$

Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k isoperations, and one see supportion.

Hence, the amortized cost is $kC_{1-0} + C_{0-1} \le 2$

8.3 Fibonacci Heaps

◆ @ ▶ ◆ 臺 ▶ ◆ 臺 ▶ 340/604

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 \ .$$

• Changing bit from 1 to 0:

$$\hat{C}_{1\rightarrow0}=C_{1\rightarrow0}+\Delta\Phi=1-1\leq0~.$$

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \le 2$.

EADS © Ernst Mayr, Harald Räcke 8.3 Fibonacci Heaps

◆ ■ ト < 置 ト < 置 ト 340/604

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0 \to 1} = C_{0 \to 1} + \Delta \Phi = 1 + 1 \le 2$$
 .

• Changing bit from 1 to 0:

$$\hat{C}_{1\rightarrow0}=C_{1\rightarrow0}+\Delta\Phi=1-1\leq0~.$$

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\to 0} + \hat{C}_{0\to 1} \le 2$.

EADS ©Ernst Mayr, Harald Räcke 8.3 Fibonacci Heaps

◆ ■ ト < 置 ト < 置 ト 340/604

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
 .

• Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
.

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\to 0} + \hat{C}_{0\to 1} \le 2$.

EADS © Ernst Mayr, Harald Räcke 8.3 Fibonacci Heaps

◆ ■ ト < 置 ト < 置 ト 340/604

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
 .

• Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0 \ .$$

 Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow0} + \hat{C}_{0\rightarrow1} \leq 2$.

EADS © Ernst Mayr, Harald Räcke

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ E ▶ ▲ E ▶ 341/604

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x.marked that specifies whether x is marked or not.

The potential function:

- t(S) denotes the number of trees in the heap.
- m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.

The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps

▲ 個 ト ▲ 臣 ト ▲ 臣 ト 343/604 We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.

S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 문 ▶ ▲ 문 ▶ 346/604

- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer

Running time:

• Actual cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 346/604

- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer

Running time:

- ► Actual cost O(1).
- No change in potential.

- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer

Running time:

- ▶ Actual cost O(1).
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 월 ▶ ▲ 월 ▶ 347/604

- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 347/604

- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.

Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

S. delete-min(x)

8.3 Fibonacci Heaps

▲ □ → < = → < = → 348/604

- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 348/604
- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

8.3 Fibonacci Heaps

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 348/604

- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

8.3 Fibonacci Heaps

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 348/604

- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

• Consolidate root-list so that no roots have the same degree. Time $t \cdot O(1)$ (see next slide).

Consolidate:

8.3 Fibonacci Heaps

</

Consolidate:

8.3 Fibonacci Heaps

▲ 圖 ▶ ▲ 클 ▶ ▲ 클 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

</

Consolidate:

8.3 Fibonacci Heaps

▲ ● ▶ ▲ ● ▶ ▲ ● ▶
● ▲ ● ▶ ▲ ● ▶

Consolidate:

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

▲ 圖 ▶ < 圖 ▶
▲ 圖 ▶ < 圖 ▶

Consolidate:

8.3 Fibonacci Heaps

</

Consolidate:

8.3 Fibonacci Heaps

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

Consolidate:

8.3 Fibonacci Heaps

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

▲ 圖 ▶ < 필 ▶
▲ 圖 ▶ < 필 ▶

Consolidate:

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 문 ▶ ▲ 문 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 문 ▶ ▲ 문 ▶ 349/604

Consolidate:

8.3 Fibonacci Heaps

▲ @ ▶ ▲ ≧ ▶ ▲ ≧ ▶ 349/604

Actual cost for delete-min()

• At most $D_n + t$ elements in root-list before consolidate.

8.3 Fibonacci Heaps

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 350/604

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

• $t' \leq D_n + 1$ as degrees are different after consolidating.

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

• $t' \leq D_n + 1$ as degrees are different after consolidating.

• Therefore
$$\Delta \Phi \leq D_n + 1 - t$$
;

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - \frac{c}{c} \cdot (t - D_n - 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

\$\le (c_1 + c)D_n + (c_1 - c)t + c \le 2c(D_n + 1)\$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

\$\le (c_1 + c)D_n + (c_1 - c)t + c \le 2c(D_n + 1) \le \mathcal{O}(D_n)\$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

Amortized cost for delete-min()

- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

\$\le (c_1 + c)D_n + (c_1 - c)t + c \le 2c(D_n + 1) \le \mathcal{O}(D_n)\$

for ${\color{black}{c}} \geq c_1$.

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

8.3 Fibonacci Heaps

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 351/604
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by *h*.
 Nothing else to do.

Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by *h*.
 Nothing else to do.

Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by *h*.
 Nothing else to do.

Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by *h*.
 Nothing else to do.

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

EADS © Ernst Mayr, Harald Räcke

- Decrease key-value of element x reference by h.
- Cut the parent edge of *x*, and make *x* into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
p \leftarrow parent[x];

while (p is marked)

pp \leftarrow parent[p];

cut of p; make it into a root; unmark it;

p \leftarrow pp;

if p is unmarked and not a root mark it;
```

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t'=t+l_{\rm c}$ as every cut creates one new root.
- $m' \leq m (\ell 1) + 1 \equiv m \ell + 2$, since all but the first cut: unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq l+2(-l+2)=4-l$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t'=t+l_{\rm c}$ as every cut creates one new root.
- $m' \leq m (\ell 1) + 1 \equiv m \ell + 2$, since all but the first cut: unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq l+2(-l+2)=4-l$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t'=t+l_{s}$ as every cut creates one new root.
- $m' \leq m (\ell 1) + 1 \equiv m \ell + 2$, since all but the first cut: unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq l+2(-l+2)=4-l$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $> t' = t + \ell_i$ as every out creates one new root.
- $m' \leq m = (\ell 1) + 1 = m \ell + 2$, since all but the first cutter unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq l+2(-l+2)=4-l$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(l+1) + c(4-l) \le (c_2-c)(l+4c = 0(1)),$

if $c \geq c_2$.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(l+1) + c(4-l) \le (c_2-c)l + 4c = O(1)_{i_1}$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

$$\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 - \ell$$

Amortized cost is at most

$c_2(l+1) + c(4-l) \le (c_2 - c)l + 4c = 0$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = \mathcal{O}(1),$ if $c \ge c_2.$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1),$

if $c \geq c_2$.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1),$$

if $c \geq c_2$.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\bullet \ \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1),$$

if $c \ge c_2$.

Delete node

H.delete(*x*):

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D(n))$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}(D(n))$ for delete-min.

Lemma 2

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

degree
$$(y_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i > 1 \end{cases}$$

Proof

- ▶ When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

Proof

- ▶ When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

Proof

- ▶ When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

Proof

- ▶ When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

8.3 Fibonacci Heaps

▲ 個 ▶ ▲ 클 ▶ ▲ 클 ▶ 358/604

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- *s_k* monotonically increases with *k*
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(\gamma_i)$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$
$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

8.3 Fibonacci Heaps

▲ @ ▶ ▲ E ▶ ▲ E ▶ 358/604

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- *s_k* monotonically increases with *k*
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_{k} = 2 + \sum_{i=2}^{k} \operatorname{size}(y_{i})$$
$$\geq 2 + \sum_{i=2}^{k} s_{i-2}$$
$$= 2 + \sum_{i=0}^{k-2} s_{i}$$

8.3 Fibonacci Heaps

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 358/604

Definition 3

Consider the following non-standard Fibonacci type sequence:

$$F_{k} = \begin{cases} 1 & \text{if } k = 0\\ 2 & \text{if } k = 1\\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

1. $F_k \ge \phi^k$. 2. For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.