How to find an augmenting path?

Construct an alternating tree.

D)

()
/

) O

o8 q/
Teen, \

® O O O O

O
O

O

© Ernst Mayr, Harald Racke

even nodes
odd nodes

Case 3:
v is already contained
in T as an odd vertex

ignore successor y

18 Augmenting Paths for Matchings

556

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

()
/

Case 4:
v is already contained
in T as an even vertex

% '
N

can’t ignore y

e
.

)
® O O O O

does not happen in
‘ bipartite graphs

EADS 18 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

557

S={1,...,n}

S ={1,...,n}

start with an

empty matching

free: number of

unmatched nodes in

S

as long as there are

Algorithm 50 BiMatch (G, match)
1: for x € V do mate[x] < O;
2. v < 0; free — n;
3: while free>1andr <n do
4: r<—r+1
5: if mate[r] =0 then
6: for i =1 to m do parent[i'] — 0
7 Q < 0; Q.append(r); aug — false;
8: while aug = false and Q #) do
9: X < Q.dequeue();
10: for y € Ay do
11: if mate[y] =0 then
12: augm(mate, parent, y);
13: aug < true;
14: free — free —1;
15: else
16: if parent[y] =0 then
17: parent[y] — x;
18: Q.enqueue(mate[y]);

continue

graph G = (SUS',E)

7: root of current tree

unmatched nodes and
we did not yet try to
grow from all nodes we

v ic the neaw nnde that

19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, =0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that |[L| = |R| =n

» assume that there is an edge between every pair of nodes
,ryevxVv

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Réacke

559

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |T'(S)| = |S|, whereT'(S) denotes the set
of nodes in R that have a neighbour in S.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke 560

19 Weighted Bipartite Matching

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L]|.

> Let S denote a minimum cut and let Ls & L. n S and
Rs ¥ R n S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

> This gives Rs > |[T'(Ls)]|.

> The size of the cutis |L| — |Lg| + |Rs]|.

» Using the fact that |[T'(Ls)| = Ls gives that this is at least |L|.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke 562

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, x, =0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights
in the following sense:

Xu + Xy = w, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains
edges that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = xy + xy.

» Try to compute a perfect matching in the subgraph H(X). If
you are successful you found an optimal matching.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

563

Algorithm Outline

Reason:

» The weight of your matching M* is

Z W) = Z (Xu +xv) = va .

(u,v)yeM* (u,v)eM* v

» Any other matching M has

> W < D (utxp) <D Xy .

(u,v)eM (u,v)eM v

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke 564

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that thereisaset S < L,
with |[I'(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(X).

Idea: reweight such that:
> the total weight assigned to nodes decreases

» the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

565

Changing Node Weights

Increase node-weights in I'(S) by +46, and decrease the
node-weights in S by —§.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight. +6|I(S)

» Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence

would go between S and I'(S)) 0
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
L R
m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke 566

Weighted Bipartite Matching

Edges not drawn have weight 0.

m EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Réacke

567

Analysis

How many iterations do we need?

> One reweighting step increases the number of edges out of
S by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because
all its edges either go between I'(S) and S or between L — §
and R —T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Racke

568

Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

EADS 19 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

569

How to find an augmenting path?

Construct an alternating tree.

/O O

Y
A

vd
N

JEON
Q

o
¢
/\
O 0O 3 O 0O O
O O O O O O

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Réacke

570

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd! = IT (Veven)| < |Vevenl, and all odd vertices are
saturated in the current matching.

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Racke

571

Analysis

» The current matching does not have any edges from Vgq to
outside of L \ Veyen (edges that may possibly be deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veven to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.

» In total we otain a running time of @(n?).

» A more careful implementation of the algorithm obtains a
running time of O(n3).

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Racke

572

A Fast Matching Algorithm

Algorithm 50 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let P = {Py,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~M&(PLU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Racke

573

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |M| more red edges than
blue edges.

» Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

© Ernst Mayr, Harald Réacke

20 The Hopcroft-Karp Algorithm

574

Analysis

> Let Pq,..., Py be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

> M eMae(PLU---UPy)=Ma&P, &---®Pg.
» Let P be an augmenting path in M’.

Lemma 5
ThesetA2 Mo (M ©P)=(PyU---UPy) &P contains at least
(k +1)¥ edges.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Racke

575

