Analysis

» The current matching does not have any edges from Vgq to
outside of L \ Veyen (edges that may possibly be deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veven to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.

» In total we otain a running time of @(n?).

» A more careful implementation of the algorithm obtains a
running time of O(n3).

19 Weighted Bipartite Matching

© Ernst Mayr, Harald Racke

572

A Fast Matching Algorithm

Algorithm 50 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let P = {Py,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~M&(PLU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Racke

573

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |M| more red edges than
blue edges.

» Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

© Ernst Mayr, Harald Réacke

20 The Hopcroft-Karp Algorithm

574

Analysis

> Let Pq,..., Py be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

> M eMae(PLU---UPy)=Ma&P, &---®Pg.
» Let P be an augmenting path in M’.

Lemma 5
ThesetA2 Mo (M ©P)=(PyU---UPy) &P contains at least
(k +1)¥ edges.

20 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Racke

575

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |M| + k + 1.

» Each of these paths is of length at least £.

m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 576

Analysis

Lemma 6

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Pq,..., Py, this follows
from the maximality of the set {Py,..., Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {P1,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k€ + |P| - 1.

» The lower bound on |A| gives (k +1)¥ < |A| < k€ +|P| -1,
and hence |[P| =€ + 1.

EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

577

Analysis

If the shortest augmenting path w.r.t. a matching M has ¥ edges
then the cardinality of the maximum matching is of size at most
V]
Proof.
The symmetric difference between M and M* contains
IM*| — |M| vertex-disjoint augmenting paths. Each of these
paths contains at least £ + 1 vertices. Hence, there can be at
V]

most ;. of them.

m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 578

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration [/|V]] the length of a shortest augmenting
path must be at least [/|V]] +1 = +/|V].

» Hence, there can be at most |V|/({/|V| + 1) < /|V]|
additional augmentations.

m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

579

Analysis

Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O(m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

m EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke

580

Analysis

» Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

» Any such path must visit the layers of the BFS-tree from left
to right.

» To go from an odd layer to an even layer it must use a
matching edge.

» To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

» We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

» A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

EADS 20 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 581

M) M)
Q:/VC Q .
. (0O
* " \
Y " \\‘*O-
@.. 1 \
O N CE\ E:
" \‘\
K AN \\/\
VC O \\\ L/
o | -
\AC_--'--&S:/'O
O

How to find an augmenting path?

Construct an alternating tree.

}) O

even nodes
odd nodes

y is already contained
in T" as an even vertex

O O
O O
Case 4:
u O 4 O O
O O

can’t ignore y

Thecyclew -« y —x - w
is called a blossom.

w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.

m EADS 21 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke 583

