11 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;

Cuts

Definition 1

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 2

The capacity of a cut *A* is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$$
,

where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

```
EADS 11 Introduction
© Ernst Mayr, Harald Räcke 428
```

Flows

Definition 4

An (s, t)-flow is a function $f : E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

 $0 \leq f(e) \leq c(e)$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \operatorname{out}(v)} f(e) = \sum_{e \in \operatorname{into}(v)} f(e) \ .$$

(flow conservation constraints)

EADS © Ernst Mayr, Harald Räcke

Flows

Definition 5 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

11 Introduction

EADS © Ernst Mayr, Harald Räcke

431

Flows Example 6 69 ·6/10 0/10 ·0/15 0|15 8|8 0/10 0|15 16 11|30 The value of the flow is val(f) = 24. EADS © Ernst Mayr, Harald Räcke 11 Introduction 432

Proof.

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
$$= \sum_{e \in \operatorname{out}(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in \operatorname{out}(v)} f(e) - \sum_{e \in \operatorname{in}(v)} f(e) \right)$$
$$= \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

EADS © Ernst Mayr, Harald Räcke

11 Introduction

Corollary 9

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

