Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

12.1 The Generic Augmenting Path Algorithm

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 437/604

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

12.1 The Generic Augmenting Path Algorithm

▲ ● ▲ ● ▲ ● ▲
437/604

Greedy-algorithm:

- start with f(e) = 0 everywhere
- ▶ find an *s*-*t* path with *f*(*e*) < *c*(*e*) on every edge
- augment flow along the path
- repeat as long as possible

12.1 The Generic Augmenting Path Algorithm

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 437/604

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

12.1 The Generic Augmenting Path Algorithm

▲ □ ▶ < □ ▶ < □ ▶
438/604

Definition 1

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Definition 1

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 44 FordFulkerson(G = (V, E, c))1: Initialize $f(e) \leftarrow 0$ for all edges.2: while \exists augmenting path p in G_f do3: augment as much flow along p as possible.

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 1 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 1 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 12 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 12 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 12.1 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

◆ 個 ト ◆ 臣 ト ◆ 臣 ト 440/604

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 12. © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

EADS 1 © Ernst Mayr, Harald Räcke

12.1 The Generic Augmenting Path Algorithm

12.1 The Generic Augmenting Path Algorithm

EADS © Ernst Mayr, Harald Räcke 12.1 The Generic Augmenting Path Algorithm

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- So There exists a cut A, B such that val(f) = cap(A, B).
- \in Flow f is a maximum flow.
- \gg . There is no augmenting path w.r.t. f_{\pm}

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- There exists a cut A, B such that val $(f) = \operatorname{cap}(A, B)$.
- > Flow f is a maximum flow.
- 3 . There is no augmenting path w.r.t. $f_{\rm eff}$

12.1 The Generic Augmenting Path Algorithm

◆ 個 ト < 臣 ト < 臣 ト 441/604

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- There exists a cut A, B such that val(f) = cap(A, B).
- \in Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. $f_{\rm eff}$

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that val(f) = cap(A, B).

2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

$1. \Rightarrow 2.$

This we already showed.

$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

$3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from x in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s\in A$ and $t\in A$.

 $1. \Rightarrow 2.$ This we already showed.

$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let / be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

Let f be a flow with no augmenting paths...

- Let A be the set of vertices reachable from x in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.
$1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- ► Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- ► Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $\operatorname{val}(f)$

12.1 The Generic Augmenting Path Algorithm

◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 443/604

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

12.1 The Generic Augmenting Path Algorithm

▲ ●
 ▲ ●
 ▲ ●
 ▲ 443/604

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$

12.1 The Generic Augmenting Path Algorithm

▲ 個 ▶ < 里 ▶ < 里 ▶
 443/604

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$
$$= \operatorname{cap}(A, V \setminus A)$$

EADS © Ernst Mayr, Harald Räcke 12.1 The Generic Augmenting Path Algorithm

▲ ●
 ▲ ●
 ▲ ●
 ▲ 443/604

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$
$$= \sum_{e \in \operatorname{out}(A)} c(e)$$
$$= \operatorname{cap}(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

ヨトイヨト

Analysis

Assumption: All capacities are integers between 1 and C.

Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

12.1 The Generic Augmenting Path Algorithm

◆ 週 ▶ ◆ 置 ▶ ◆ 置 ▶ 444/604

Analysis

Assumption: All capacities are integers between 1 and *C*.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value *f* (e) is integral.

12.1 The Generic Augmenting Path Algorithm

Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

12.1 The Generic Augmenting Path Algorithm

Problem: The running time may not be polynomial.

12.1 The Generic Augmenting Path Algorithm

▲ 個 ▶ < 里 ▶ < 里 ▶
 446/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆日 → 王 → 王 → 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ < ■ ▶ < ■ ▶</p>
447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆日 → 王 → 王 → 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ < □ ▶ < □ ▶
 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ < □ ▶ < □ ▶
 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm

◆日 → 王 → 王 → 447/604

Problem: The running time may not be polynomial.

Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

▲ @ ▶ ▲ 聖 ▶ ▲ 里 ▶ 447/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

▲ ● ▶ < ■ ▶ < ■ ▶
 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

▲ 圖 ▶ < 圖 ▶
 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

▲ 圖 ▶ < 圖 ▶
 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

▲ 圖 ▶ < 圖 ▶
 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

12.1 The Generic Augmenting Path Algorithm

▲ ● ▶ < ■ ▶ < ■ ▶
 448/604

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

Running time may be infinite!!!

EADS © Ernst Mayr, Harald Räcke 12.1 The Generic Augmenting Path Algorithm

▲ 圖 ▶ < 圖 ▶
 448/604

12.1 The Generic Augmenting Path Algorithm

▲ @ ▶ ▲ ≣ ▶ ▲ ≣ ▶ 449/604 How to choose augmenting paths?

12.1 The Generic Augmenting Path Algorithm

◆ □ ▶ < ■ ▶ < ■ ▶</p>
449/604

How to choose augmenting paths?

We need to find paths efficiently.
- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

12.1 The Generic Augmenting Path Algorithm

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

Several possibilities:

12.1 The Generic Augmenting Path Algorithm

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

Several possibilities:

Choose path with maximum bottleneck capacity.

12.1 The Generic Augmenting Path Algorithm

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Lemma 6

The length of the shortest augmenting path never decreases.

Lemma 7

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

Lemma 6 *The length of the shortest augmenting path never decreases.*

Lemma 7

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

Lemma 6

The length of the shortest augmenting path never decreases.

Lemma 7

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$, via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

12.2 Shortest Augmenting Paths

▲ 🗗 🕨 🖣 🖹 🕨 着 🖡 451/604

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

We can find the shortest augmenting paths in time $\mathcal{O}(m)$, via BFS.

 $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

12.2 Shortest Augmenting Paths

▲ 個 ト ▲ 臣 ト ▲ 臣 ト 451/604

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path *P* is a shortest *s*-*u* path in G_f if it is a an *s*-*u* path in L_G .

Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path *P* is a shortest *s*-*u* path in G_f if it is a an *s*-*u* path in L_G .

12.2 Shortest Augmenting Paths

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 452/604 In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

First Lemma:

The length of the shortest augmenting path never decreases.

First Lemma:

The length of the shortest augmenting path never decreases.

► After an augmentation the following changes are done in *G*_{*f*}.

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G*_{*f*}.
- Some edges of the chosen path may be deleted (bottleneck edges).

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G_f*.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G*_{*f*}.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G*_{*f*}.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

First Lemma:

The length of the shortest augmenting path never decreases.

- ► After an augmentation the following changes are done in *G*_{*f*}.
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

Theorem 9

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

Theorem 9

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

Theorem 9

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

Theorem 9

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

Initializing E_L for the phase takes time O(m).

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching *t*) or unsuccessful) decreases the number of edges in E_L and takes time O(n).

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2).$

12.2 Shortest Augmenting Paths

Initializing E_L for the phase takes time O(m).

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time O(n).

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2).$

12.2 Shortest Augmenting Paths

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time O(n).

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2).$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching *t*) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2).$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching *t*) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2).$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching *t*) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.

• We need to find paths efficiently.

12.3 Capacity Scaling

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

12.3 Capacity Scaling

- We need to find paths efficiently.
- > We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

12.3 Capacity Scaling

Intuition:

Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

12.3 Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

12.3 Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

12.3 Capacity Scaling

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 462/604

Algorithm 45 maxflow(G, s, t, c) 1: foreach $e \in E$ do $f_e \leftarrow 0$; 2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$ 3: while $\Delta \ge 1$ do 4: $G_f(\Delta) \leftarrow \Delta$ -residual graph 5: **while** there is augmenting path P in $G_f(\Delta)$ **do** 6: $f \leftarrow \text{augment}(f, c, P)$ 7: $\text{update}(G_f(\Delta))$ 8: $\Delta \leftarrow \Delta/2$ 9: return f

12.3 Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

12.3 Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

12.3 Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

• because of integrality we have $G_f(1) = G_f$

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

12.3 Capacity Scaling

◆ □ → < ≥ → < ≥ → 465/604

Lemma 11

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

12.3 Capacity Scaling

Lemma 11 There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

12.3 Capacity Scaling

Lemma 11 There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

• There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.

Lemma 11

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- in G_f this cut can have capacity at most $2m\Delta$.

Lemma 11

There are $\lceil \log C \rceil$ iterations over Δ . **Proof:** obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + 2m\Delta$.

Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- in G_f this cut can have capacity at most $2m\Delta$.
- This gives me an upper bound on the flow that I can still add.

12.3 Capacity Scaling

▲ ● < ● < ● <
▲ 466/604

Lemma 13

There are at most 2m augmentations per scaling-phase.

12.3 Capacity Scaling

◆ □ ▶ < 三 ▶ < 三 ▶
466/604

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

• Let *f* be the flow at the end of the previous phase.

12.3 Capacity Scaling

▲ ● ◆ ● ◆ ● ◆
▲ 466/604

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- ► $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 14

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

