5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of *n*. Then constant additive terms do not play an important role.
- An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

EADS © Ernst Mayr, Harald Räcke	

Asymptotic Notation

ווחו

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N} to \mathbb{R}^+ .

 <i>g</i> ∈ Ω(<i>f</i>): <i>g</i> ∈ Θ(<i>f</i>): 	$0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$ $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$ $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$	
	$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$ $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$	 Note that for the version of the Landau notation defined here, we assume that <i>f</i> and <i>g</i> are positive functions. There also exist versions for arbitrary functions, and for the case that the limes is not infinity.
	5 Asymptotic Nota	ation
🛛 🖓 © Ernst Mayr, Harald R	äcke	31

Asymptotic Notation

Formal Definition

Let *f* denote functions from \mathbb{N} to \mathbb{R}^+ .

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- (set of functions that asymptotically grow not slower than f)
- $\blacktriangleright \Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- $\bullet \ o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\blacktriangleright \omega(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

EADS © Ernst Mayr, Harald Räcke 5 Asymptotic Notation 30

Asymptotic Notation

29

Abuse of notation

- **1.** People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(q(n))$, when they mean $f \in \mathcal{O}(q)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto z(n), z \in o(q)$ such that h(n) = f(n) + z(n).

2. In this context $f(n)$ does r function f evaluated at n , it is a shorthand for the fu (leaving out domain and co only giving the rule of cor of the function).	ample the median of n elements can be determined using $\frac{3}{2}n + o(n)$ compar-
EADS	5 Asymptotic Notation
© Ernst Mayr, Harald Räcke	32

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

	5 Asymptotic Notation	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke		32

Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + \mathcal{O}(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

34

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

EADS © Ernst Mayr, Harald Räcke

5 Asymptotic Notation

Asymptotic Notation in EquationsThe $\Theta(i)$ -symbol on the left represents one anonymous function
 $f: \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is
computed.How do we interpret an expression like: $\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$ Careful!

"It is understood" that every occurence of an O-symbol (or $\Theta, \Omega, o, \omega$) on the left represents one anonymous function.

Hence, the left side is not equal to

 $\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$

$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$ does not really have a reasonable interpreta- tion.

EADS © Ernst Mayr, Harald Räcke 5 Asymptotic Notation

33

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

 $n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$

represents

 $\left\{f:\mathbb{N}\to\mathbb{R}^+\mid f(n)=n^2\cdot g(n)+h(n)\right.$ with $g(n) \in \mathcal{O}(n)$ and $h(n) \in \mathcal{O}(\log n)$ Recall that according to the previous slide e.g. the expressions $\sum_{i=1}^{n} \mathcal{O}(i)$ and $\sum_{i=1}^{n/2} \mathcal{O}(i) + \sum_{i=n/2+1}^{n} \mathcal{O}(i)$ generate different sets. EADS 5 Asymptotic Notation © Ernst Mayr, Harald Räcke 36

Asymptotic Notation

Lemma 1

Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for *g*). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\blacktriangleright \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\bullet \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}).$

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold.

EADS ©Ernst Mayr, Harald Räcke

© Ernst Mayr, Harald Räcke

5 Asymptotic Notation

38

37

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms: • If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n. ► However, suppose that I have two algorithms: • Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$. • Algorithm B. Running time $g(n) = \log^2 n$. Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient. EADS © Ernst Mayr, Harald Räcke 5 Asymptotic Notation 40