Wintersemester 2012/13 Übungsblatt 5 12. November 2012

Diskrete Strukturen

Abgabetermin: 20. November 2012, 14 Uhr in die DS Briefkästen

Hausaufgabe 1 (4 Punkte)

1. Den folgenden aussagenlogischen Ausdruck bezeichnen wir mit F:

$$p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow r$$
.

Konstruieren Sie eine zu F äquivalente disjunktive Normalform.

2. Eine aussagenlogische Formel G mit Variablen p, q, r sei wie folgt in ihrer disjunktiven Normalform gegeben.

$$G = (p \land q \land r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land \neg r).$$

Bestimmen Sie eine zu G äquivalente Formel H in konjunktiver Normalform.

Hausaufgabe 2 (8 Punkte)

Sei $M = \{1, 2, 3\}$. Für jede binäre Relation R über M definieren wir die Eigenschaft von R, eine Autorit x zu enthalten, wie folgt:

$$(\exists x \in M \ \forall y \in M) \ [(x,y) \in R \Rightarrow (y,x) \in R]. \tag{1}$$

- 1. Geben Sie eine Relation R über M an, die die Formel (1) wahr macht.
- 2. Wir bezeichnen die Formel (1) mit E. Geben Sie eine pränexe prädikatenlogische Formel an, die äquivalent ist zu $\neg E$.
- 3. Geben Sie eine Relation R über M an, so dass $\neg E$ gilt, d.h., dass die Relation R keine Autorität x enthält.
- 4. Zeigen Sie durch Widerspruchsbeweis, dass für jede transitive Relation R über M die Formel (1) wahr ist.

Hausaufgabe 3 (4 Punkte)

Ist die Formel $(\forall x \exists y)[P(x,y)] \wedge (\exists u \forall v)[\neg P(u,v)]$ erfüllbar? Beweisen Sie Ihre Antwort!

Hausaufgabe 4 (4 Punkte)

Für alle $n \in \mathbb{N}_0$ definieren wir

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

1. Zeigen Sie mit direktem Beweis für alle $n \in \mathbb{N}$ die Gleichung

$$L_{n+1} = L_n + L_{n-1} \, .$$

2. Man zeige mit vollständiger Induktion, dass L_n für jedes $n \in \mathbb{N}_0$ eine natürliche Zahl ist.

Vorbereitung 1

Ganze Zahlen $a, b \in \mathbb{Z}$ nennt man kongruent modulo m, mit $m \in \mathbb{N}$, i. Z. $a \equiv b \pmod{m}$ oder $a \equiv_m b$, falls sich a und b um ein ganzzahliges Vielfaches von m unterscheiden, d. h., falls es ein $k \in \mathbb{Z}$ gibt, so dass $a = b + k \cdot m$ gilt. Diesen Zusammenhang kann man der Definition der Operation mod : $\mathbb{Z} \times \mathbb{N} \to \mathbb{Z}$ zugrunde legen: $b = a \mod m$ gilt genau dann, wenn $a \equiv b \pmod{m}$ und gleichzeitig $0 \leq b < m$ gilt.

Zeigen Sie für alle $a, b \in \mathbb{Z}$ und $m \in \mathbb{N}$:

$$a \equiv a \mod m \pmod{m}, \tag{1}$$

$$(a+b) \mod m = [(a \mod m) + (b \mod m)] \mod m, \qquad (2)$$

$$(a \cdot b) \mod m = [(a \mod m) \cdot (b \mod m)] \mod m. \tag{3}$$

In enger Beziehung zur mod-Operation steht die ganzzahlige Division $a \div m$ zweier Zahlen $a \in \mathbb{Z}, m \in \mathbb{N}$. Es gilt

$$a = (a \div m) \cdot m + (a \mod m).$$

Berechnen Sie: (i) $5 \div 4$, (ii) $(-5) \div 4$, (iii) $(-x) \div 1$.

Vorbereitung 2

Die Operation $g \mod m$ mit $m \in \mathbb{N}$ über den ganzen Zahlen $g \in \mathbb{Z}$ eröffnet den Zugang zu zirkulären Operationen. Für m = 4 betrachten wir die folgende Abbildung $f_4 : \mathbb{Z} \to \mathbb{Z} \times \mathbb{C}$ für alle $g \in \mathbb{Z}$:

$$f_4(g) = (g, i^{(g \mod 4)}).$$

Entwickeln Sie für den Bereich $g \in [-1, 6]$ mit Hilfe der Gauß'schen Ebene der komplexen Zahlen eine 3-dimensionale graphische Darstellung von f_4 .

Vorbereitung 3

Seien $S = \mathbb{R} \setminus \{-1\}$ und für alle $x, y \in S$

$$x \circ y = x + y + xy$$
.

Zeigen Sie, dass die Algebra $A=(S,\circ)$ bezüglich des binären Operators \circ eine Gruppe bildet.

Vorbereitung 4

Sei $S'=(S,\circ)$ eine Halbgruppe. Dann nennen wir ein Element $x\in S$ vertauschbar bezüglich \circ , falls gilt $(\forall a\in S)$ [$a\circ x=x\circ a$]. Es sei V(S) die Menge aller bezüglich \circ vertauschbaren Elemente von S.

1. Zeigen Sie die Abgeschlossenheit von V(S) unter der Verknüpfung \circ , d. h.:

$$x, y \in V(S) \Longrightarrow x \circ y \in V(S)$$
.

2. Nun nehmen wir an, dass S' eine Gruppe mit Einselement 1 ist. Zeigen Sie, dass die Unterhalbgruppe $(V(S), \circ_{V(S)})$ von S' dann ebenfalls eine Gruppe ist.

Tutoraufgabe 1

Wahr oder falsch? Beweisen Sie Ihre Antworten.

- 1. $-7 \equiv 8 \pmod{3}$.
- 2. Für alle $n \in \mathbb{N}$ gilt $n^2 \mod (n+1) = 1$.
- 3. Sei \div die ganzzahlige Division. Dann gilt $(-10) \div 4 = -3$.

Tutoraufgabe 2

Die Operation $g \mod m$ mit $m \in \mathbb{N}$ über den ganzen Zahlen $g \in \mathbb{Z}$ eröffnet den Zugang zu zirkulären Operationen. Wir betrachten die folgende Abbildung $f_m : \mathbb{Z} \to \mathbb{Z} \times \mathbb{C}$ für alle $g \in \mathbb{Z}$:

$$f_m(g) = \left(g, e^{\frac{2\pi i (g \mod m)}{m}}\right).$$

Entwickeln Sie mit Hilfe der Gauß'schen Ebene der komplexen Zahlen eine 3-dimensionale graphische Darstellung von f_m .

<u>Hinweis</u>: Benützen Sie die Euler'sche Formel $e^{i\alpha} = \cos \alpha + i \cdot \sin \alpha$ mit $\alpha \in \mathbb{R}$.

Tutoraufgabe 3

Sei S gleich der Potenzmenge $\mathcal{P}(X)$ (= 2^X) einer beliebigen Menge X und sei \circ für alle $A, B \subseteq X$ gegeben durch

$$A \circ B = (A \cup B) \setminus (A \cap B).$$

Zeigen Sie, dass $A=(S,\circ)$ eine Algebra ist, die bezüglich des binären Operators \circ eine Gruppe bildet.

Tutoraufgabe 4

Es sei $G = (S, \circ, e)$ eine Gruppe mit genau 4 Elementen $e, a, b, c \in S$, in der speziell für a gilt $a^2 = e$ mit dem neutralen Element e.

- 1. Geben Sie zwei verschiedene Gruppen mit obiger Eigenschaft an, indem Sie die zugehörigen Verknüpfungstabellen konstruieren.
- 2. Zeigen Sie, dass es keine weiteren Gruppen mit obiger Eigenschaft gibt.
- 3. Wir betrachten jetzt **beliebige** Gruppen mit 4 Elementen. Zeigen Sie elementar, dass es in diesen stets ein Element mit Ordnung 2 gibt.