Wintersemester 2012/13 Informationsblatt 4 3. Dezember 2012

Diskrete Strukturen

Hin.Ti's zu HA Blatt 8

Die folgenden Hinweise und Tipps zu Hausaufgaben sind für die Bearbeitung nicht notwendig, möglicherweise aber hilfreich. Man sollte zunächst versuchen, die Hausaufgaben ohne Hilfestellung zu lösen.

ad HA 1:

- 1. \Longrightarrow : Nach Definition gilt $\operatorname{ord}(g) = \min\{m : g^m = e\}$. Es folgt $g^d = e$. Seien n > 0 und $g^n = e$. Folgern Sie nun d|n. \Longleftrightarrow : Sei d > 0 mit $g^d = e$ und für jedes n > 0 mit $g^n = e$ gelte d|n. Folgern Sie $d = \operatorname{ord}(g)$.
- 2. Es gilt $\operatorname{ord}(g) = x \cdot \operatorname{ggT}(\operatorname{ord}(g), n)$ und $n = y \cdot \operatorname{ggT}(\operatorname{ord}(g), n)$ für gewisse teilerfremde x und y. Es folgt $nx = y \cdot \operatorname{ord}(g)$. Zeigen Sie mit Teilaufgabe 1, dass $\operatorname{ord}(g^n)$ Teiler von $\frac{\operatorname{ord}(g)}{\operatorname{ggT}(\operatorname{ord}(g), n)}$ ist. Zeigen Sie nun, dass auch $\frac{\operatorname{ord}(g)}{\operatorname{ggT}(\operatorname{ord}(g), n)}$ Teiler von $\operatorname{ord}(g^n)$ ist.

ad HA 2:

Bestimmen Sie das Bild von 1 unter σ . Bilden Sie die Ergebnisse Ihrer letzten Berechnung so lange immer wieder ab, bis Sie wieder 1 erhalten. Verfahren Sie analog mit den Zahlen, die Sie noch nicht abgebildet haben.

Die Ordnung von σ läßt sich aus der Ordnung der einzelnen Zyklen von σ bestimmen.

ad HA 3:

- 1. Sei $n \geq 3$. Wenn S_n zyklisch ist, dann gibt es ein $p \in S_n$, so dass $\operatorname{ord}(p) = |S_n| = n!$ gilt. Betrachten Sie nun die Zyklendarstellung von p und leiten Sie daraus $\operatorname{ord}(p) < n!$ und damit einen Widerspruch ab.
- 2. Die Ordnung einer Permutation p wird durch das kleinste gemeinsame Vielfache der Längen der Zyklen in der Zyklendarstellung von p bestimmt (siehe Korollar 107 der Vorlesung). Zeigen Sie k=12.

ad HA 4:

- 1. Man verwende die Gleichung $x^2 1 = (x 1)(x + 1)$.
- 2. Mit Ausnahme von 1 und n-1 besitzt jedes Element k aus $K_n \setminus \{0\}$ ein multiplikatives Inverses k^{-1} , so dass $k \neq k^{-1}$ gilt!

ad HA 5:

Wann sind zyklische Gruppen isomorph?

ad HA 6:

1. Man beachte TA 4 auf Blatt 6