Die Gesamtzahl der Abbildungen $N \to R$ ist

$$= r^n = \sum_{A \subseteq R} \# \text{ der surjektiven Abbildungen } N \to A$$

$$= \sum_{k=0}^r \sum_{\substack{A \subseteq R \\ |A|=k}} \# \text{ der surjektiven Abbildungen } N \to A$$

$$= \sum_{k=0}^r \binom{r}{k} \cdot k! \cdot S_{n,k} = \sum_{k=0}^r S_{n,k} \cdot r^{\underline{k}}$$

$$= \sum_{k=0}^n S_{n,k} \cdot r^{\underline{k}}, \qquad \text{da } r^{\underline{k}} = 0 \text{ für } k > r \text{ .}$$

4.5 Zusammenfassende Darstellung

N seien n Tennisbälle, R seien r Schachteln: "balls into bins"

	beliebig	injektiv	surjektiv	bijektiv ($n=r$)
N unterscheidbar	r^n	$r^{\underline{n}}$	$r! \cdot S_{n,r}$	r! = n!
R unterscheidbar		,	· · ~ / i, i	
N nicht unterscheidbar	$\frac{r^{\bar{n}}}{n!}$	$\binom{r}{n}$	$\binom{n-1}{r-1}$	1
R unterscheidbar	$\overline{n!}$	$\binom{n}{n}$	(r-1)	1
N unterscheidbar	$\sum_{r=0}^{r} C_r$	1 oder 0	C	1
${\cal R}$ nicht unterscheidbar	$\sum_{k=1}^{n} S_{n,k}$	1 oder 0	$S_{n,r}$	1
N nicht unterscheidbar	$\sum_{r}^{r} D$	1 odor 0	D	1
${\cal R}$ nicht unterscheidbar	$\sum_{k=1}^{n} P_{n,k}$	1 oder 0	$P_{n,r}$	1

4.6 Abzählen von Permutationen

4.6.1 Stirling-Zahlen der ersten Art

Definition 172

Die Stirling-Zahl der ersten Art

$$s_{n,k}$$

gibt die Anzahl der Permutationen $\in S_n$ mit genau k Zyklen an.

Einfache Beobachtungen:

• für alle $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} s_{n,k} = n!$$

$$s_{n,1} = (n-1)! = \frac{n!}{n}$$

$$s_{n,n-1} = \binom{n}{2}$$

$$s_{n,n} = 1$$

$$s_{n,k}=0$$
 für $k>n\geq 0$

Man setzt weiterhin:

$$s_{0,0} := 1$$
 $s_{n,0} := 0$ für $n \in \mathbb{N}$ $s_{n,k} = 0$ für $n \in \mathbb{N}_0, k < 0$.

4.6.2 Typ einer Permutation

Definition 173

Sei π eine Permutation von n Objekten, $b_i(\pi)$ die Anzahl der Zyklen von π der Länge i(i = 1, ..., n) und $b(\pi)$ die Anzahl der Zyklen von π , also

$$\sum_{i=1}^n i \cdot b_i(\pi) = n \qquad \text{ und } \qquad \sum_{i=1}^n b_i(\pi) = b(\pi).$$

Dann heißt der formale Ausdruck

$$1^{b_1(\pi)}2^{b_2(\pi)}3^{b_3(\pi)}\cdots n^{b_n(\pi)}$$

der Typ von π (Potenzen mit Exponent 0 werden gewöhnlich nicht geschrieben).

Beispiel 174

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 6 & 2 & 7 & 1 & 8 & 3 \end{pmatrix}$$

$$= (4\ 5\ 6\ 2\ 7\ 1\ 8\ 3)$$
als Funktionswerte

$$= (1\ 4\ 2\ 5\ 7\ 8\ 3\ 6)$$
 in Zyklenschreibweise

Typ: 8¹

Beispiel 175

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 7 & 1 & 6 & 5 & 3 & 8 \end{pmatrix}$$

$$= (2 4 7 1 6 5 3 8)$$

$$= (1 \ 2 \ 4) \ (3 \ 7) \ (5 \ 6) \ (8)$$

Typ: $1^1 \ 2^2 \ 3^1$