Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 1

1 DFS-trees in undirected graphs

Let G = (V, E) be an undirected connected graph, and let s € V' be some node of G. If
we start a depth first search (DFS) at s, then this DFS visits all nodes of G. Each edge
e € E can exhibit one of two possible characteristics:

1. The DFS visits a so far unvisited node w using the edge e = {v,w}; in this case,
we call e a tree edge which is considered being directed (downwards) from v to w.

2. The DFS considers the edge e but the node on the other side of the edge is already
visited; in this case, we call e a back edge.

We illustrate this with an example:

The picture shows (a) an undirected graph, (b) the partition of the edges into tree edges
(solid lines) and back edges (dashed lines), and (c) the rooted variation of the obtained
DFS-tree.

2 Biconnected components

Let G = (V, E) in the following be an undirected connected graph.

Definition 1 (Connectivity). The (vertex) connectivity of G is the size of the smallest
subset of nodes such that after removing these nodes the resulting graph is unconnected.

If G is a clique of size n then its connectivity is defined as n — 1.

A graph having connectivity of at least 2 is called biconnected.

Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 2

Definition 2 (Articulation vertices). A node a of G is called articulation vertex if the
number of connected components of G increases by removing a from G.

It is easy to see that G is biconnected if and only if G has at least three nodes, is
connected and doesn’t have an articulation vertex.

Definition 3. The biconnected components of a
graph are the mazimal biconnected induced subgra-
phs.

A block is a maximal connected induced subgraph
without any articulation node (w.r.t. the subgraph

itself).

That means, the set of all blocks consists of all bi-
connected components, all bridges and all isolated

nodes. O--Q

The accompanying graph consists of three blocks NN
which are denoted by solid, dashed, and dotted li- O --0O-) O
nes, respectively. The articulation vertices are sha- B
ded. O

By the way: The intersection of two blocks contains at most one single node. Therefore,
no edge can belong to two different blocks. The nodes which are contained in the inter-
section of two different blocks are exactly the articulation vertices. The blocks constitute
a tree structure, that means, the structure we obtain by considering blocks that share
an articulation vertex as neighbours is cycle-free.

The connectivity of a graph and the computation of blocks is (for example) relevant
when building a failure-resistant communication network. A biconnected subnetwork
will continue to be connected even if one of its nodes is removed.

2.1 Modified DFS-algorithm

The algorithm presented in this section can find all blocks in a connected graph G. If we
are only interested in the biconnected components we just have to filter out all bridges.
If the graph isn’t connected, we apply the algorithm individually to each connected
component.

By applying a modified depth first search to G we can compute the following values:

e pre[v] = preorder number (DFS-number) of v, i.e., of all nodes visited by the DFS,
what number v was (pre[s] = 0).

e [ow[v] = minimal preorder number pre[w| of a node w which can be reached by
starting at v, then following > 0 tree edges, and then possibly using one single
back edge.

Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 3

The calculation of the low-values can be done by utilizing the following observation:

low[v] = min < {pre[v]} U
{low[w] | w is a child of v in the DFS-tree } U
{pre[w] | {v,w} is a back edge })

More precisely, at the beginning of the recursive DFS-function, we calculate for a node
v the value pref[v] and initialize low[v] by pre[v]; then we consider all indicent edges of
v: if an edge is a tree edge from v to w, then we induce a recursive call of the function
on and set low[v] = min{low[v], low[w]} after that; if the edge is a back edge from v to
w then we set low[v] = min{low[v], pre[w]}.

We can now apply the following Lemma.

Lemma 4. Let G = (V, E) be an undirected connected graph and T a DFS-tree in G.
A node a € V' is an articulation vertex if and only if either

(a) a is the root of T and has at least two children, or

(b) a is not the root of T and a has a child b with low[b] > pre|al.

Therefore, the articulation vertices of G can efficiently be calculated in time O(|V|+|E])
by using a slightly modified DF'S. The blocks can also be computed in linear time: We
use a stack S of edges which is empty at the beginning. If a tree edge is found, then we
put it on top of the stack S before we induce the recursive call of the function; if a back
edge is found, then we immediately put it on top of S. Whenever we backtrack from the
recursive call on node w to the parent node v and low[w] > pre[v] holds, then all the
edges on top of the stack until (including) edge {v, w} constitute exactly the edges of a
block.

3 DFS-forests in directed edges

Let G = (V, E) be a directed graph. If we start a DFS at a node of G, then we don’t
necessarily reach all nodes, and we have to start another DFS at some unvisited node.
Therefore, a DFS of a directed graph does in general not yield a single tree but a forest
consisting of several trees. Each directed edge e = (v, w) € E is considered by the DFS
if the node v is processed, and can exhibit one of four possible characteristics:

1. w is unvisited; in this case, we call e a tree edge which is considered being directed
(downwards) from v to w.

2. w is already visited and its DFS-number is larger than the DFS-number of v; in
this case, we call e a forward edge.

3. w is already visited and is an ancestor (parent, grandparent, etc.) of v with respect
to the same DFS-tree; in this case, we call e a back edge.

Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 4

4. w is already visited and is not an ancestor (parent, grandparent, etc.) of v and also
not a descendant (child, grandchild, etc.) of v with respect of the same DFS-tree;
in this case, w can be part of the same DFS-tree as v or can be part of a DFS-tree
which was created before, and we call e a cross edge.

We illustrate the different kinds of edges in the following example:

The picture shows a possible DF'S-forest which can be obtained by a DFS in a directed
graph. Tree edges are solid, cross edges are dashed, forward and back edges are dotted.
Each node contains its respective DFS-number (preorder number).

4 Strongly connected components

Let G = (V, E) be a directed graph. Two nodes = and y of G are part of the same
strongly connected component if there is a directed path from z to y and a directed
path from y to x in G. Using this implicit definition we can partition the set V of
nodes of GG into strongly connected components. The example graph above consists of
the five strongly connected components {0,1,2,3,4}, {6,7,8}, {10}, {9} and {5}. For
a given graph G = (V, E), we want to compute all strongly connected components in
time O(|V| + |E|). To this end, we can again use a modified DFS.

We consider the DFS-forest and the preorder numbers obtained by a DFS in G. For
each strongly connected component Z C V we call the node of Z having the smallest
preorder number root the strongly connected component. We can show that a node r is
a root if and only if it satisfies the following properties:

1. there is no back edge from r or from a descendant of r (child, grandchild, etc.) to
an ancestor (parent, grandparent, ect.) in the DFS-forest

2. there is no cross edge from r or a descendant of r to a node w such that the root
of the strongly connected component of w is a ancestor of r

(For instance, the node 4 of the example graph above has such a cross edge and therefore
is not the root of a strongly connected component.) The strongly connected components
can now be “picked” from the DFS-forest by iteratively and in a bottom-up fashion

Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 5

removing a root from the forest together with its subtree which is attached to the root
(in the example above the subtrees being attached to the roots 0, 6, 10, 9, and 5, in this
order). This can be done by a single DFS (in the sense that each node and edge has to
be considered only a constant number of times).

In addition to the usual preorder number pre[v] of a node v we define a value lowlink[v]:

e [owlink[v] = minimal preorder number pre[w| of a node w that can be reached by
starting at v, using > 0 tree edges and possibly one back edge after that, or that
can be reached by starting at v, using > 0 tree edges followed by a single cross
edge such that the root of w’s strongly connected component is an ancestor of v.

The lowlink-valus can be computed during a slightly modified DFS using the following
equality:

lowlink[v] = min ({ pre[v] } U { lowlink[w] | w is child of v in the DFS-forest }

U { pre[w] | (v,w) is a back edge }
U { pre[w] | (v,w) is a cross edge, and the root of the

strongly connected component of w is an ancestor of v }>

More precisely, at the beginning of the recursively defined DFS-function we calculate the
value pre[v] of the current node v and initialize lowlink[v] by the value of pre[v]; then we
consider all edges emanating from v: if an edge is a tree edge to a child w, then we make a
recursive call of the DFS-function on w and set lowlink[v] = min{lowlink[v], lowlink|w]}
afterwards. If an edge is a back edge then we set lowlink[v] = min{lowlink[v], pre[w]}.
If an edge is a cross edge to a node w, then we must decide if the root of the strongly
connected component of w is an ancestor of v; this is the case if and only if w wasn’t
already assigned to a strongly connected component (“picked”). If this is the case, then
we again set lowlink[v] = min{lowlink[v], pre[w]} (otherwise, the cross edge is ignored).

We use the fact that a node r is the root of a strongly connected component if and only
if after the execution of the DFS-function for r the condition lowlink[r] = pre[r] holds.
Therefore, it is easy for the algorithm to recognize the roots of the strongly connected
components. The strongly connected components itselves can be calculated on the fly by
using the following approach. We use a stack S of nodes which is empty at the beginning.
When the recursive DFS-function is called on a node v, then we put v on top of the
stack S at the beginning of the execution of the function. If at the end of the execution
of the function for node v the condition lowlink[v] = pre[v] holds, then all nodes on top
of the stack until (including) v constitute the next strongly connected component Z. All
nodes of Z must be marked as “already assigned to a strongly connected component”
such that cross edges that lead to these nodes and are encountered later on are ignored
when calculating lowlink-values.

Remark: It should be noted that people were able to find algorithms which compute
biconnected components in undirected graphs, and strongly connected components in

Praktikum Algorithmen-Entwurf (Teil 4) 05.11.2012 6

directed graphs in time O(|V| + |E|), respectively, and which are basically only slight-
ly modified depth first searches. At a first glance we could have assumed that only
algorithms with a much larger running time could solve these problems.

