
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Prof. Dr. Ernst W. Mayr
Chintan Shah, Chris Pinkau, Jeremias Weihmann

Wintersemester 2012
Aufgabenblatt 10

17.12.2012

Praktikum Algorithmen-Entwurf

Due Date: Monday, 7th January 2013, 12:00

Aufgabe 1 (Suffix arrays)
Write a program for the construction of a suffix array for a given input text X of length n
in time O(n log n). Use a little memory space as possible. Moreover, write the algorithm
for searching the text X for a search pattern Y of length m to run in time O(m log n). If
the pattern occurs in X, your program should display the number of occurrences as well
as the positions of the first and last occurrences in X. These are the positions with the
smallest and largest suffix, with respect to the lexicographic ordering. These correspond
to the entries you find with binary search in the Pos array.

Your program must not be implemented with LEDA. The running time for the construc-
tion of the suffix array is to be displayed, as well as the running times of the individual
searches for the patterns. Check your implementation with these values and determine
whether it really grows linearly in the length of the text, or the length of the search
pattern, respectively.

The input text consists of arbitrary ASCII characters (of type char), hence the size of
the alphabet is 256. The character $ is the end-of-file symbol and occurs only at the
end of texts. As example inputs you may use the text files text1.txt to text6.txt

and the pattern files text1.pat to text6.pat (as well as the corresponding solution files
text1.sol to text6.sol). Every text file contains a text, followed by $. The pattern files
contain a bunch of patterns, all followed by a $ and a line break. Your program receives
the names of the input file and the pattern file as command line parameters; the output
is displayed on the screen.

Hints

Consider the example of a correct output for the algorithm on the next site.



Example for input and output of the algorithm

Input:

Heute programmieren wir

einen Algorithmus zur

Suche in Texten.$

te$

wir

ein$

xx$

Output:

Suffix-Array: Zeit 0.000238 Sek

Muster 1: 2 Vorkommen

lex. kleinste Pos. 4, lex. groesste Pos. 59

Zeit: 0.000012 Sek

Muster 2: 1 Vorkommen

lex. kleinste Pos. 21, lex. groesste Pos. 21

Zeit: 0.000006 Sek

Muster 3: 0 Vorkommen

Zeit: 0.000002 Sek

2


