3.1 Savitch's theorem

3.2 PSPACE and strategies for game playing

4. $\mathcal{NL}\text{-completeness}$

4.1 Certificate definition of $\mathcal{NL}:$ Read-once certificates

4.2 $\mathcal{NL} = co\mathcal{NL}$

See

Sanjeev Arora, Boaz Barak:

Computational Complexity — A Modern Approach, p. 82–88, Cambridge University Press: Cambridge-New York-Melbourne, 2009

Further references:

Larry J. Stockmeyer, Albert R. Meyer:

Word problems requiring exponential time, Proceedings of the 5th Symposium on Theory of Computing, p. 1–9 (1973) This paper contains some important PSPACE-completeness results.

Albert R. Meyer, Larry J. Stockmeyer:

The equivalence problem for regular expressions with squaring requires exponential space,

Proceedings of the 13th Annual Symposium on Switching and Automata Theory, p. 125–129 (1972)

This paper contains an EXPSPACE-completeness result.

And here an \mathcal{NL} -machine based proof for $\mathcal{NL} = co\mathcal{NL}$:

Holenstein, Thomas
Complexity Theory,
p. 13–14, Script, ETH Zürich, 2010

