
SS 2012

Efficient Algorithms
and Data Structures II

Harald Räcke

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2012SS/ea/

Summer Term 2012

EADS II

c©Harald Räcke 1/366

to be filled...

EADS II 1 Introduction

c©Harald Räcke 2/366

Algorithm 1 Pivot(N, B,A, b, c, v, `, e)
1: let Â be the new m×n-matrix

2: b̂e ← b`/a`e
3: for j ∈ N − {e} do âej ← a`j/a`e
4: âe` ← 1/a`e
5: for i ∈ B − {`} do

6: b̂i ← bi − aieb̂e
7: for j ∈ N − \{e} do âij = aij − aieâej
8: âi` ← −aieâe`
9: v̂ ← v + ceb̂e

10: for j ∈ N − {e} do ĉj ← cj − ceâej
11: ĉ` ← −ceâe`
12: N̂ ← N − {e} ∪ {`}; B̂ ← B − {`} ∪ {e}

Algorithm 2 Simplex(A, b, c)
1: (N, B,A, b, c, v)← InitializeSimplex(A,b, c)
2: let ∆ be new n-dimensional vector

3: while some index j ∈ N has cj > 0 do

4: choose index e ∈ N with ce > 0

5: for each i ∈ B do

6: if aie > 0 then ∆i ← bi/aie
7: else ∆i ←∞
8: choose index ` ∈ B that minimizes ∆i
9: if ∆` = ∞ return "‘unbounded"’

10: else(N, B,A, b, c, v) = Pivot(N, B,A, b, c, v, `, e)
11: for i ∈ B do x̄i ← bi;
12: for i ∈ N do x̄i ← 0;

13: return x̄

Simplex Algorithm

Questions/Observations:

ñ How do we find the initial feasible solution?

ñ The final solution will be feasible, since each pivot-step

guarantees that no variable becomes negative (no problem);

ñ Do we terminate?

ñ Is the final solution optimal?

EADS II 2 Simplex Algorithm

c©Harald Räcke 5/366

Simplex Algorithm

The simplex algorithm only considers basic feasible

solutions!

Lemma 1
If a given linear program LP is bounded then there is a basic

feasible solution that gives the optimum value.

Basic feasible solutions correspond to corner points of the

feasible region!

EADS II 2 Simplex Algorithm

c©Harald Räcke 6/366

Simplex Algorithm

The simplex algorithm only considers basic feasible

solutions!

Lemma 1
If a given linear program LP is bounded then there is a basic

feasible solution that gives the optimum value.

Basic feasible solutions correspond to corner points of the

feasible region!

EADS II 2 Simplex Algorithm

c©Harald Räcke 6/366

Simplex Algorithm

The simplex algorithm only considers basic feasible

solutions!

Lemma 1
If a given linear program LP is bounded then there is a basic

feasible solution that gives the optimum value.

Basic feasible solutions correspond to corner points of the

feasible region!

EADS II 2 Simplex Algorithm

c©Harald Räcke 6/366

ale a

beer b

4a+ 4b ≤ 160

5a+ 15b ≤ 480

35a+ 20b ≤ 1190

a ≥ 0

b ≥ 0

EADS II 2 Simplex Algorithm

c©Harald Räcke 7/366

Let P = {x | Ax = b,x ≥ 0} ⊆ Rd.

Definition 2
x is a vertex of P if there is no y with x +y ∈ P and x −y ∈ P .

EADS II 2 Simplex Algorithm

c©Harald Räcke 8/366

Let P = {x | Ax = b,x ≥ 0} ⊆ Rd.

Definition 2
x is a vertex of P if there is no y with x +y ∈ P and x −y ∈ P .

EADS II 2 Simplex Algorithm

c©Harald Räcke 8/366

Let P = {x | Ax = b,x ≥ 0} ⊆ Rd.

Lemma 3
Then for each x ∈ P there exists a vertex x′ ∈ P with ctx′ ≥ ctx.

This means that also the maximum is obtained at a vertex of P .

EADS II 2 Simplex Algorithm

c©Harald Räcke 9/366

Let P = {x | Ax = b,x ≥ 0} ⊆ Rd.

Lemma 3
Then for each x ∈ P there exists a vertex x′ ∈ P with ctx′ ≥ ctx.

This means that also the maximum is obtained at a vertex of P .

EADS II 2 Simplex Algorithm

c©Harald Räcke 9/366

Let P = {x | Ax = b,x ≥ 0}, and let x ∈ P . If x is a vertex of P
there is nothing to prove.

Otw. there exist y ≠ 0 with x ±y ∈ P .

Since A(x −y) = A(x +y) (equal to b) we have Ay = 0

Since, ct(x±y) = ctx± cty we have cty = 0 since x is maximal.

Wlog. we can assume that there is a j ∈ {1 . . . d} with yj < 0 (otw.

redefine y as −y).

EADS II 2 Simplex Algorithm

c©Harald Räcke 10/366

Let P = {x | Ax = b,x ≥ 0}, and let x ∈ P . If x is a vertex of P
there is nothing to prove.

Otw. there exist y ≠ 0 with x ±y ∈ P .

Since A(x −y) = A(x +y) (equal to b) we have Ay = 0

Since, ct(x±y) = ctx± cty we have cty = 0 since x is maximal.

Wlog. we can assume that there is a j ∈ {1 . . . d} with yj < 0 (otw.

redefine y as −y).

EADS II 2 Simplex Algorithm

c©Harald Räcke 10/366

Let P = {x | Ax = b,x ≥ 0}, and let x ∈ P . If x is a vertex of P
there is nothing to prove.

Otw. there exist y ≠ 0 with x ±y ∈ P .

Since A(x −y) = A(x +y) (equal to b) we have Ay = 0

Since, ct(x±y) = ctx± cty we have cty = 0 since x is maximal.

Wlog. we can assume that there is a j ∈ {1 . . . d} with yj < 0 (otw.

redefine y as −y).

EADS II 2 Simplex Algorithm

c©Harald Räcke 10/366

Let P = {x | Ax = b,x ≥ 0}, and let x ∈ P . If x is a vertex of P
there is nothing to prove.

Otw. there exist y ≠ 0 with x ±y ∈ P .

Since A(x −y) = A(x +y) (equal to b) we have Ay = 0

Since, ct(x±y) = ctx± cty we have cty = 0 since x is maximal.

Wlog. we can assume that there is a j ∈ {1 . . . d} with yj < 0 (otw.

redefine y as −y).

EADS II 2 Simplex Algorithm

c©Harald Räcke 10/366

Let P = {x | Ax = b,x ≥ 0}, and let x ∈ P . If x is a vertex of P
there is nothing to prove.

Otw. there exist y ≠ 0 with x ±y ∈ P .

Since A(x −y) = A(x +y) (equal to b) we have Ay = 0

Since, ct(x±y) = ctx± cty we have cty = 0 since x is maximal.

Wlog. we can assume that there is a j ∈ {1 . . . d} with yj < 0 (otw.

redefine y as −y).

EADS II 2 Simplex Algorithm

c©Harald Räcke 10/366

Define

ñ λ =min{−xjyj | yj < 0}.
ñ That’s the largest λ s.t. x + λy ≥ 0.

ñ A(x + λy) = b.

ñ (x + λy)k = 0 but xk > 0.

ñ Replace x by x + λy. We have reduced the number of

non-zero components.

EADS II 2 Simplex Algorithm

c©Harald Räcke 11/366

Define

ñ λ =min{−xjyj | yj < 0}.
ñ That’s the largest λ s.t. x + λy ≥ 0.

ñ A(x + λy) = b.

ñ (x + λy)k = 0 but xk > 0.

ñ Replace x by x + λy. We have reduced the number of

non-zero components.

EADS II 2 Simplex Algorithm

c©Harald Räcke 11/366

Define

ñ λ =min{−xjyj | yj < 0}.
ñ That’s the largest λ s.t. x + λy ≥ 0.

ñ A(x + λy) = b.

ñ (x + λy)k = 0 but xk > 0.

ñ Replace x by x + λy. We have reduced the number of

non-zero components.

EADS II 2 Simplex Algorithm

c©Harald Räcke 11/366

Define

ñ λ =min{−xjyj | yj < 0}.
ñ That’s the largest λ s.t. x + λy ≥ 0.

ñ A(x + λy) = b.

ñ (x + λy)k = 0 but xk > 0.

ñ Replace x by x + λy. We have reduced the number of

non-zero components.

EADS II 2 Simplex Algorithm

c©Harald Räcke 11/366

Define

ñ λ =min{−xjyj | yj < 0}.
ñ That’s the largest λ s.t. x + λy ≥ 0.

ñ A(x + λy) = b.

ñ (x + λy)k = 0 but xk > 0.

ñ Replace x by x + λy. We have reduced the number of

non-zero components.

EADS II 2 Simplex Algorithm

c©Harald Räcke 11/366

Let P = {x | Ax = b,x ≥ 0} and x ∈ P . Let Ax denote the

sub-matrix of A that contains columns j with xj > 0.

Lemma 4
x is a vertex of P if and only if the columns of Ax are linearly

independent.

EADS II 2 Simplex Algorithm

c©Harald Räcke 12/366

Let P = {x | Ax = b,x ≥ 0} and x ∈ P . Let Ax denote the

sub-matrix of A that contains columns j with xj > 0.

Lemma 4
x is a vertex of P if and only if the columns of Ax are linearly

independent.

EADS II 2 Simplex Algorithm

c©Harald Räcke 12/366

Proof: (⇐=)

Assume for contradiction that x is not a vertex. Then there exists

y ≠ 0 with x ±y ∈ P . Let Ay denote the sub-matrix

corresponding to the non-zero components of y.

As before we get Ay = 0 (from A(x −y) = A(x +y)). Since

y ≠ 0 Ay has linearly dependent columns

xj = 0⇒ yj = 0, since x +y ≥ 0 and x −y ≥ 0. Therefore, Ay
contains a subset of the columns of x.

Hence, Ax contains linearly dependent columns.

EADS II 2 Simplex Algorithm

c©Harald Räcke 13/366

Proof: (⇐=)

Assume for contradiction that x is not a vertex. Then there exists

y ≠ 0 with x ±y ∈ P . Let Ay denote the sub-matrix

corresponding to the non-zero components of y.

As before we get Ay = 0 (from A(x −y) = A(x +y)). Since

y ≠ 0 Ay has linearly dependent columns

xj = 0⇒ yj = 0, since x +y ≥ 0 and x −y ≥ 0. Therefore, Ay
contains a subset of the columns of x.

Hence, Ax contains linearly dependent columns.

EADS II 2 Simplex Algorithm

c©Harald Räcke 13/366

Proof: (⇐=)

Assume for contradiction that x is not a vertex. Then there exists

y ≠ 0 with x ±y ∈ P . Let Ay denote the sub-matrix

corresponding to the non-zero components of y.

As before we get Ay = 0 (from A(x −y) = A(x +y)). Since

y ≠ 0 Ay has linearly dependent columns

xj = 0⇒ yj = 0, since x +y ≥ 0 and x −y ≥ 0. Therefore, Ay
contains a subset of the columns of x.

Hence, Ax contains linearly dependent columns.

EADS II 2 Simplex Algorithm

c©Harald Räcke 13/366

Proof: (⇐=)

Assume for contradiction that x is not a vertex. Then there exists

y ≠ 0 with x ±y ∈ P . Let Ay denote the sub-matrix

corresponding to the non-zero components of y.

As before we get Ay = 0 (from A(x −y) = A(x +y)). Since

y ≠ 0 Ay has linearly dependent columns

xj = 0⇒ yj = 0, since x +y ≥ 0 and x −y ≥ 0. Therefore, Ay
contains a subset of the columns of x.

Hence, Ax contains linearly dependent columns.

EADS II 2 Simplex Algorithm

c©Harald Räcke 13/366

Proof: (⇐=)

Assume for contradiction that x is not a vertex. Then there exists

y ≠ 0 with x ±y ∈ P . Let Ay denote the sub-matrix

corresponding to the non-zero components of y.

As before we get Ay = 0 (from A(x −y) = A(x +y)). Since

y ≠ 0 Ay has linearly dependent columns

xj = 0⇒ yj = 0, since x +y ≥ 0 and x −y ≥ 0. Therefore, Ay
contains a subset of the columns of x.

Hence, Ax contains linearly dependent columns.

EADS II 2 Simplex Algorithm

c©Harald Räcke 13/366

Proof: (⇐=)

Suppose Ax, has linearly dependent rows. Then there is y ≠ 0

with Axy = 0.

By adding zero-components to y we get y ≠ 0 with Ay = 0 and

xj = 0⇒ yj = 0

For small enough ε > 0 this gives x + εy ∈ P and x − εy ∈ P .

Hence, x is not a vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 14/366

Proof: (⇐=)

Suppose Ax, has linearly dependent rows. Then there is y ≠ 0

with Axy = 0.

By adding zero-components to y we get y ≠ 0 with Ay = 0 and

xj = 0⇒ yj = 0

For small enough ε > 0 this gives x + εy ∈ P and x − εy ∈ P .

Hence, x is not a vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 14/366

Proof: (⇐=)

Suppose Ax, has linearly dependent rows. Then there is y ≠ 0

with Axy = 0.

By adding zero-components to y we get y ≠ 0 with Ay = 0 and

xj = 0⇒ yj = 0

For small enough ε > 0 this gives x + εy ∈ P and x − εy ∈ P .

Hence, x is not a vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 14/366

Proof: (⇐=)

Suppose Ax, has linearly dependent rows. Then there is y ≠ 0

with Axy = 0.

By adding zero-components to y we get y ≠ 0 with Ay = 0 and

xj = 0⇒ yj = 0

For small enough ε > 0 this gives x + εy ∈ P and x − εy ∈ P .

Hence, x is not a vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 14/366

Proof: (⇐=)

Suppose Ax, has linearly dependent rows. Then there is y ≠ 0

with Axy = 0.

By adding zero-components to y we get y ≠ 0 with Ay = 0 and

xj = 0⇒ yj = 0

For small enough ε > 0 this gives x + εy ∈ P and x − εy ∈ P .

Hence, x is not a vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 14/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

A vertex/corner-point is defined by choosing a set of linearly

independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is

m (otw. we can remove a constraint).

If x is a vertex then Ax has full column-rank (≤m).

Ax can be extended to a quadratic (m×m-matrix) with full

column rank.

A quadratic matrix AB with full rank is called basis.

EADS II 2 Simplex Algorithm

c©Harald Räcke 15/366

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 2 Simplex Algorithm

c©Harald Räcke 16/366

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 2 Simplex Algorithm

c©Harald Räcke 16/366

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

EADS II 2 Simplex Algorithm

c©Harald Räcke 16/366

Termination

The objective function may not decrease!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 2 Simplex Algorithm

c©Harald Räcke 17/366

Termination

The objective function may not decrease!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 2 Simplex Algorithm

c©Harald Räcke 17/366

Termination

The objective function may not decrease!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 2 Simplex Algorithm

c©Harald Räcke 17/366

Termination

The objective function may not decrease!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

EADS II 2 Simplex Algorithm

c©Harald Räcke 17/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How to choose the pivot-elements:

ñ We can choose a column e as an entering variable if ce > 0.

ñ The standard choice is the column that maximizes ce.
ñ If aie ≥ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/a`s is minimal

among all variables i with ais > 0.

ñ If several variables have minimum b`/a`s you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

EADS II 2 Simplex Algorithm

c©Harald Räcke 18/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

EADS II 2 Simplex Algorithm

c©Harald Räcke 19/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i si > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 2 Simplex Algorithm

c©Harald Räcke 20/366

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x ≥ 0} (recall that A is not the original

matrix), with cti ≤ 0 for all i. Furthermore, each basic variable

only appears in one equation with coefficient +1.

Of course, LP′ =max{ctx | Ax = b,x ≥ 0} has the same

optimum solution (with different objective function value).

The best we can hope for (for LP′) is an objective function value of

0 as ct ≤ 0 and x ≥ 0 is required.

The basic feasible solution achieves that and is therefore optimal.

EADS II 2 Simplex Algorithm

c©Harald Räcke 21/366

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x ≥ 0} (recall that A is not the original

matrix), with cti ≤ 0 for all i. Furthermore, each basic variable

only appears in one equation with coefficient +1.

Of course, LP′ =max{ctx | Ax = b,x ≥ 0} has the same

optimum solution (with different objective function value).

The best we can hope for (for LP′) is an objective function value of

0 as ct ≤ 0 and x ≥ 0 is required.

The basic feasible solution achieves that and is therefore optimal.

EADS II 2 Simplex Algorithm

c©Harald Räcke 21/366

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x ≥ 0} (recall that A is not the original

matrix), with cti ≤ 0 for all i. Furthermore, each basic variable

only appears in one equation with coefficient +1.

Of course, LP′ =max{ctx | Ax = b,x ≥ 0} has the same

optimum solution (with different objective function value).

The best we can hope for (for LP′) is an objective function value of

0 as ct ≤ 0 and x ≥ 0 is required.

The basic feasible solution achieves that and is therefore optimal.

EADS II 2 Simplex Algorithm

c©Harald Räcke 21/366

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x ≥ 0} (recall that A is not the original

matrix), with cti ≤ 0 for all i. Furthermore, each basic variable

only appears in one equation with coefficient +1.

Of course, LP′ =max{ctx | Ax = b,x ≥ 0} has the same

optimum solution (with different objective function value).

The best we can hope for (for LP′) is an objective function value of

0 as ct ≤ 0 and x ≥ 0 is required.

The basic feasible solution achieves that and is therefore optimal.

EADS II 2 Simplex Algorithm

c©Harald Räcke 21/366

Duality
How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ ci then

∑
iyibi will be an upper

bound.

EADS II 3 Duality

c©Harald Räcke 22/366

Duality
How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ ci then

∑
iyibi will be an upper

bound.

EADS II 3 Duality

c©Harald Räcke 22/366

Duality
How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ ci then

∑
iyibi will be an upper

bound.

EADS II 3 Duality

c©Harald Räcke 22/366

Duality

Definition 5
Let z =max{ctx | Ax ≥ b,x ≥ 0} be a linear program P (called

the primal linear program).

The linear program D defined by

w =min{bty | Aty ≥ c,y ≥ 0}

is called the dual problem.

EADS II 3 Duality

c©Harald Räcke 23/366

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}

EADS II 3 Duality

c©Harald Räcke 24/366

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}

EADS II 3 Duality

c©Harald Räcke 24/366

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}

EADS II 3 Duality

c©Harald Räcke 24/366

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}

EADS II 3 Duality

c©Harald Räcke 24/366

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bty | Aty ≥ c,y ≥ 0}
ñ w =max{−bty | −Aty ≤ −c,y ≥ 0}

The dual problem is

ñ z =min{−ctx | −Ax ≥ −b,x ≥ 0}
ñ z =max{ctx | Ax ≥ b,x ≥ 0}

EADS II 3 Duality

c©Harald Räcke 24/366

Weak Duality

Let z =max{ctx | Ax ≤ b,x ≥ 0} and

w =min{bty | Aty ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | Aty ≥ c,y ≥ 0}.

Theorem 7 (Weak Duality)

Let x̂ be a primal feasible and let ŷ be dual feasible. Then

ctx̂ ≤ z ≤ w ≤ btŷ .

EADS II 3 Duality

c©Harald Räcke 25/366

Weak Duality

Let z =max{ctx | Ax ≤ b,x ≥ 0} and

w =min{bty | Aty ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | Aty ≥ c,y ≥ 0}.

Theorem 7 (Weak Duality)

Let x̂ be a primal feasible and let ŷ be dual feasible. Then

ctx̂ ≤ z ≤ w ≤ btŷ .

EADS II 3 Duality

c©Harald Räcke 25/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

Weak Duality

Atŷ ≥ c ⇒ x̂tAtŷ ≥ x̂tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ ytAx̂ ≤ ŷtb (ŷ ≥ 0)

This gives

ctx̂ ≤ ŷtAx̂ ≤ btŷ .

Since, there exist primal feasible x̂ with ctx̂ = z, and dual

feasible ŷ with bty = w we get z ≤ w.

If P is unbounded then D is infeasible.

EADS II 3 Duality

c©Harald Räcke 26/366

The following linear programs form a primal dual pair:

z =max{ctx | Ax = b,x ≥ 0}
w =min{bty | Aty ≤ c}

EADS II 3 Duality

c©Harald Räcke 27/366

proof...

EADS II 3 Duality

c©Harald Räcke 28/366

Strong Duality

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z∗

and w∗ denote the optimal solution to P and D, respectively.

Then

z∗ = w∗

EADS II 3 Duality

c©Harald Räcke 29/366

Lemma 9 (Projection Lemma)

Let X ⊆ Rm be a non-empty convex set, and let y ∉ X. Then there

exist x∗ ∈ X with minimum distance from y. Moreover for all

x ∈ X we have (y − x∗)t(x − x∗) ≤ 0.

Lemma 10 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on

X. Then min{f(x) : x ∈ X} exists.

EADS II 3 Duality

c©Harald Räcke 30/366

Proof of the Projection Lemma:

ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.

ñ X ≠ �. Hence, there exists x′ ∈ X.

ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.

ñ Applying Weierstrass gives the existence.

EADS II 3 Duality

c©Harald Räcke 31/366

Proof of the Projection Lemma:

ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.

ñ X ≠ �. Hence, there exists x′ ∈ X.

ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.

ñ Applying Weierstrass gives the existence.

EADS II 3 Duality

c©Harald Räcke 31/366

Proof of the Projection Lemma:

ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.

ñ X ≠ �. Hence, there exists x′ ∈ X.

ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.

ñ Applying Weierstrass gives the existence.

EADS II 3 Duality

c©Harald Räcke 31/366

Proof of the Projection Lemma:

ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.

ñ X ≠ �. Hence, there exists x′ ∈ X.

ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.

ñ Applying Weierstrass gives the existence.

EADS II 3 Duality

c©Harald Räcke 31/366

Proof of the Projection Lemma:

ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.

ñ X ≠ �. Hence, there exists x′ ∈ X.

ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.

ñ Applying Weierstrass gives the existence.

EADS II 3 Duality

c©Harald Räcke 31/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2

≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Proof of the Projection Lemma (continued):

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)t(x − x∗)

Hence, (y − x∗)t(x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

EADS II 3 Duality

c©Harald Räcke 32/366

Theorem 11 (Separating Hyperplane)

Let X ⊆ Rm be a non-empty closed convex set, and let y ∉ X.

Then there exists a separating hyperplane {x ∈ R : atx = α}
where a ∈ Rm, α ∈ R that separates y from X. (aty < α;

atx ≥ α for all x ∈ X)

EADS II 3 Duality

c©Harald Räcke 33/366

Proof of the hyperplane lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

EADS II 3 Duality

c©Harald Räcke 34/366

Proof of the hyperplane lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

EADS II 3 Duality

c©Harald Räcke 34/366

Proof of the hyperplane lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

EADS II 3 Duality

c©Harald Räcke 34/366

Proof of the hyperplane lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

EADS II 3 Duality

c©Harald Räcke 34/366

Proof of the hyperplane lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)t(x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = atx∗.

ñ For x ∈ X : at(x − x∗) ≥ 0, and, hence, atx ≥ α.

ñ Also, aty = at(x∗ − a) = α− ‖a‖2 < α

EADS II 3 Duality

c©Harald Räcke 34/366

Lemma 12 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > ytb = ytAx ≥ 0

Hence, at most one of the statements can hold.

EADS II 3 Duality

c©Harald Räcke 35/366

Lemma 12 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > ytb = ytAx ≥ 0

Hence, at most one of the statements can hold.

EADS II 3 Duality

c©Harald Räcke 35/366

Lemma 12 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > ytb = ytAx ≥ 0

Hence, at most one of the statements can hold.

EADS II 3 Duality

c©Harald Räcke 35/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

Let y be a hyperplane that separates b from S. Hence, ytb < α
and yts ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ ytb < 0

ytAx ≥ α for all x ≥ 0. Hence, ytA ≥ 0 as we can choose x
arbitrarily large.

EADS II 3 Duality

c©Harald Räcke 36/366

Lemma 13 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with Aty ≥ 0, bty < 0, y ≥ 0

EADS II 3 Duality

c©Harald Räcke 37/366

Proof of Farkas Lemma II

proof...

EADS II 3 Duality

c©Harald Räcke 38/366

Proof of Strong Duality

P : z =max{ctx | Ax ≤ b,x ≥ 0}

D: w =min{bty | Aty ≥ c,y ≥ 0}

Theorem 14 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

z = w .

EADS II 3 Duality

c©Harald Räcke 39/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b

−ctx ≤ −α
x ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

EADS II 3 Duality

c©Harald Räcke 40/366

Proof of Strong Duality

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

If the solution y,z has z = 0 we have that

∃y ∈ Rm

s.t. Aty ≥ 0

ybt < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

EADS II 3 Duality

c©Harald Räcke 41/366

Proof of Strong Duality

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

If the solution y,z has z = 0 we have that

∃y ∈ Rm

s.t. Aty ≥ 0

ybt < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

EADS II 3 Duality

c©Harald Räcke 41/366

Proof of Strong Duality

∃y ∈ Rm;z ∈ R

s.t. Aty − cz ≥ 0

ybt −αz < 0

y,z ≥ 0

If the solution y,z has z = 0 we have that

∃y ∈ Rm

s.t. Aty ≥ 0

ybt < 0

y ≥ 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

EADS II 3 Duality

c©Harald Räcke 41/366

Proof of Strong Duality

Hence, there exists a solution y,z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but bty < α. This means that

w < α.

EADS II 3 Duality

c©Harald Räcke 42/366

Proof of Strong Duality

Hence, there exists a solution y,z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but bty < α. This means that

w < α.

EADS II 3 Duality

c©Harald Räcke 42/366

Proof of Strong Duality

Hence, there exists a solution y,z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but bty < α. This means that

w < α.

EADS II 3 Duality

c©Harald Räcke 42/366

Proof of Strong Duality

Hence, there exists a solution y,z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

Then y is feasible for the dual but bty < α. This means that

w < α.

EADS II 3 Duality

c©Harald Räcke 42/366

Simplex in Matrix Notation

Given a linear program in slack form

z =max{ctx | Ax = b;x ≥ 0} .

The simplex algorithm (for a given basis B) writes the equations

in the following form:

z = v̂ + ĉtNxN
xB = b̂ − ÂNxN

Here ÂN is a matrix that contains one column for every non-basis

variable xi, i ∈ N. Similarly, ĉtN is an |N|-dimensional vector.

EADS II 3 Duality

c©Harald Räcke 43/366

Simplex in Matrix Notation

Given a linear program in slack form

z =max{ctx | Ax = b;x ≥ 0} .

The simplex algorithm (for a given basis B) writes the equations

in the following form:

z = v̂ + ĉtNxN
xB = b̂ − ÂNxN

Here ÂN is a matrix that contains one column for every non-basis

variable xi, i ∈ N. Similarly, ĉtN is an |N|-dimensional vector.

EADS II 3 Duality

c©Harald Räcke 43/366

Simplex in Matrix Notation

Given a linear program in slack form

z =max{ctx | Ax = b;x ≥ 0} .

The simplex algorithm (for a given basis B) writes the equations

in the following form:

z = v̂ + ĉtNxN
xB = b̂ − ÂNxN

Here ÂN is a matrix that contains one column for every non-basis

variable xi, i ∈ N. Similarly, ĉtN is an |N|-dimensional vector.

EADS II 3 Duality

c©Harald Räcke 43/366

Simplex in Matrix Notation

Given a linear program in slack form

z =max{ctx | Ax = b;x ≥ 0} .

The simplex algorithm (for a given basis B) writes the equations

in the following form:

z = v̂ + ĉtNxN
xB = b̂ − ÂNxN

Here ÂN is a matrix that contains one column for every non-basis

variable xi, i ∈ N. Similarly, ĉtN is an |N|-dimensional vector.

EADS II 3 Duality

c©Harald Räcke 43/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b = ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b

= ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b = ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b = ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b = ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

We can directly compute the matrix ÂN , the vector b̂, and the

constant term v̂ for a given basis B.

We have

z = Ax + b = ABxB +ANxN + b

This gives

ABxB = b −ANxN

and hence

xB = A−1
B b −A−1

B ANxN

since the matrix AB is linearly independent.

A−1
B b A−1

B AN
b̂ ÂN

EADS II 3 Duality

c©Harald Räcke 44/366

Simplex in Matrix Notation

The objective function is given by z = ctx = ctBxB + ctNxN .

Plugging in xB = A−1
B b −A−1

B ANxN gives

z = ctB(A−1
B b −A−1

B ANxN)+ ctNxN
= ctBA−1

B b + (ctN − ctBA−1
B AN)xN

ctBA
−1
B b (ctN − ctBA−1

B AN)
v̂ ĉN

EADS II 3 Duality

c©Harald Räcke 45/366

Simplex in Matrix Notation

The objective function is given by z = ctx = ctBxB + ctNxN .

Plugging in xB = A−1
B b −A−1

B ANxN gives

z = ctB(A−1
B b −A−1

B ANxN)+ ctNxN
= ctBA−1

B b + (ctN − ctBA−1
B AN)xNctBA

−1
B b (ctN − ctBA−1

B AN)
v̂ ĉN

EADS II 3 Duality

c©Harald Räcke 45/366

Simplex in Matrix Notation

The objective function is given by z = ctx = ctBxB + ctNxN .

Plugging in xB = A−1
B b −A−1

B ANxN gives

z = ctB(A−1
B b −A−1

B ANxN)+ ctNxN

= ctBA−1
B b + (ctN − ctBA−1

B AN)xNctBA
−1
B b (ctN − ctBA−1

B AN)
v̂ ĉN

EADS II 3 Duality

c©Harald Räcke 45/366

Simplex in Matrix Notation

The objective function is given by z = ctx = ctBxB + ctNxN .

Plugging in xB = A−1
B b −A−1

B ANxN gives

z = ctB(A−1
B b −A−1

B ANxN)+ ctNxN
= ctBA−1

B b + (ctN − ctBA−1
B AN)xN

ctBA
−1
B b (ctN − ctBA−1

B AN)
v̂ ĉN

EADS II 3 Duality

c©Harald Räcke 45/366

Simplex in Matrix Notation

The objective function is given by z = ctx = ctBxB + ctNxN .

Plugging in xB = A−1
B b −A−1

B ANxN gives

z = ctB(A−1
B b −A−1

B ANxN)+ ctNxN
= ctBA−1

B b + (ctN − ctBA−1
B AN)xNctBA

−1
B b (ctN − ctBA−1

B AN)
v̂ ĉN

EADS II 3 Duality

c©Harald Räcke 45/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN
= (ctN − ctBA−1

B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN
= (ctN − ctBA−1

B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN
= (ctN − ctBA−1

B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN

= ctNxN − ctBA−1
B ANxN

= (ctN − ctBA−1
B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN

= (ctN − ctBA−1
B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN
= (ctN − ctBA−1

B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form

(ct −ytA)x

this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

(ct−ctBA−1
B A)x

= ctBxB + ctNxN − ctBA−1
B ABxB − ctBA−1

B ANxN
= ctNxN − ctBA−1

B ANxN
= (ctN − ctBA−1

B AN)xN

ctBA
−1
B

yt

(ctN − ctBA−1
B AN)

ĉtN

EADS II 3 Duality

c©Harald Räcke 46/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =

[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]

=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]

≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]

= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

When Simplex terminates we have

ĉtN = ctN − ctBA−1
B AN ≤ 0

y is a feasible solution to the dual:

ytA =
[
ytAB ytAN

]
=
[
ctBA

−1
B AB ctBA

−1
B AN

]
≥
[
ctB ctN

]
= ct

(Here we assumed that B = {1, . . . ,m} which can be obtained by

renaming variables; without this assumption the notation

becomes much more cumbersome)

EADS II 3 Duality

c©Harald Räcke 47/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb = ctBA−1
B b

= ctBxB
= ctNxN + ctBxB
= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb

= ctBA−1
B b

= ctBxB
= ctNxN + ctBxB
= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb = ctBA−1
B b

= ctBxB
= ctNxN + ctBxB
= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb = ctBA−1
B b

= ctBxB

= ctNxN + ctBxB
= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb = ctBA−1
B b

= ctBxB
= ctNxN + ctBxB

= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xN = 0;

xB = b̂ = A−1
B b) is equal to the cost of the dual solution y.

ytb = ctBA−1
B b

= ctBxB
= ctNxN + ctBxB
= ctx

EADS II 3 Duality

c©Harald Räcke 48/366

Complementary Slackness

Lemma 15
Assume a linear program P =max{ctx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bty | Aty ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i) has slack if x∗j > 0 (y∗i > 0), (i.e.,

the corresponding variable restriction is not tight) and a contraint

has slack if it is not tight, then the above says that for a

primal-dual solution pair it is not possible that a constraint and

its corresponding (dual) variable has slack.

EADS II 3 Duality

c©Harald Räcke 49/366

Complementary Slackness

Lemma 15
Assume a linear program P =max{ctx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bty | Aty ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i) has slack if x∗j > 0 (y∗i > 0), (i.e.,

the corresponding variable restriction is not tight) and a contraint

has slack if it is not tight, then the above says that for a

primal-dual solution pair it is not possible that a constraint and

its corresponding (dual) variable has slack.

EADS II 3 Duality

c©Harald Räcke 49/366

Complementary Slackness
Proof:

Analogous to the proof of weak duality we obtain

ctx∗ ≤ y∗tAx∗ ≤ bty∗

Because of strong duality we then get

ctx∗ = y∗tAx∗ = bty∗

This gives e.g. ∑
j
x∗j ((y

tA)j − cj) = 0

From the constraint of the dual it follows that ytA ≥ 0. Hence the

left hand side is a sum over the product of non-negative number.

Hence, if e.g. (ytA)j − cj > 0 (the j-th constraint in the dual is

not tight) then xj = 0 (2.). The result for (1./3./4.) follows

similarly.

EADS II 3 Duality

c©Harald Räcke 50/366

Complementary Slackness
Proof:

Analogous to the proof of weak duality we obtain

ctx∗ ≤ y∗tAx∗ ≤ bty∗

Because of strong duality we then get

ctx∗ = y∗tAx∗ = bty∗

This gives e.g. ∑
j
x∗j ((y

tA)j − cj) = 0

From the constraint of the dual it follows that ytA ≥ 0. Hence the

left hand side is a sum over the product of non-negative number.

Hence, if e.g. (ytA)j − cj > 0 (the j-th constraint in the dual is

not tight) then xj = 0 (2.). The result for (1./3./4.) follows

similarly.

EADS II 3 Duality

c©Harald Räcke 50/366

Complementary Slackness
Proof:

Analogous to the proof of weak duality we obtain

ctx∗ ≤ y∗tAx∗ ≤ bty∗

Because of strong duality we then get

ctx∗ = y∗tAx∗ = bty∗

This gives e.g. ∑
j
x∗j ((y

tA)j − cj) = 0

From the constraint of the dual it follows that ytA ≥ 0. Hence the

left hand side is a sum over the product of non-negative number.

Hence, if e.g. (ytA)j − cj > 0 (the j-th constraint in the dual is

not tight) then xj = 0 (2.). The result for (1./3./4.) follows

similarly.

EADS II 3 Duality

c©Harald Räcke 50/366

Complementary Slackness
Proof:

Analogous to the proof of weak duality we obtain

ctx∗ ≤ y∗tAx∗ ≤ bty∗

Because of strong duality we then get

ctx∗ = y∗tAx∗ = bty∗

This gives e.g. ∑
j
x∗j ((y

tA)j − cj) = 0

From the constraint of the dual it follows that ytA ≥ 0. Hence the

left hand side is a sum over the product of non-negative number.

Hence, if e.g. (ytA)j − cj > 0 (the j-th constraint in the dual is

not tight) then xj = 0 (2.). The result for (1./3./4.) follows

similarly.

EADS II 3 Duality

c©Harald Räcke 50/366

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23

C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

EADS II 3 Duality

c©Harald Räcke 51/366

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23

C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

EADS II 3 Duality

c©Harald Räcke 51/366

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23

C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

EADS II 3 Duality

c©Harald Räcke 51/366

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0

EADS II 3 Duality

c©Harald Räcke 52/366

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0

EADS II 3 Duality

c©Harald Räcke 52/366

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0

EADS II 3 Duality

c©Harald Räcke 52/366

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0

EADS II 3 Duality

c©Harald Räcke 52/366

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{ctx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bt + εt)y
s.t. Aty ≥ c

y ≥ 0

EADS II 3 Duality

c©Harald Räcke 52/366

Interpretation of Dual Variables

If ε is small enough then the optimum dual solution y∗ does not

change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

EADS II 3 Duality

c©Harald Räcke 53/366

Interpretation of Dual Variables

If ε is small enough then the optimum dual solution y∗ does not

change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

EADS II 3 Duality

c©Harald Räcke 53/366

Interpretation of Dual Variables

If ε is small enough then the optimum dual solution y∗ does not

change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

EADS II 3 Duality

c©Harald Räcke 53/366

Interpretation of Dual Variables

If ε is small enough then the optimum dual solution y∗ does not

change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

EADS II 3 Duality

c©Harald Räcke 53/366

Interpretation of Dual Variables

If ε is small enough then the optimum dual solution y∗ does not

change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

EADS II 3 Duality

c©Harald Räcke 53/366

Flows

Definition 16
An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is a

function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)

EADS II 3 Duality

c©Harald Räcke 54/366

Flows

Definition 16
An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is a

function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)

EADS II 3 Duality

c©Harald Räcke 54/366

Flows

Definition 17
The value of an (s, t)-flow f is defined as

val(f) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

EADS II 3 Duality

c©Harald Räcke 55/366

Flows

Definition 17
The value of an (s, t)-flow f is defined as

val(f) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

EADS II 3 Duality

c©Harald Räcke 55/366

LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fwz −

∑
z fzw = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy+1px−1py ≥ 0

fsy (y ≠ s, t) : 1`sy −1py ≥ 1

fxs (x ≠ s, t) : 1`xs+1px ≥ −1

fty (y ≠ s, t) : 1`ty −1py ≥ 0

fxt (x ≠ s, t) : 1`xt+1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

EADS II 3 Duality

c©Harald Räcke 56/366

LP-Formulation of Maxflow

min
∑
(xy) cxyfxy

s.t. fxy (x,y ≠ s, t) : 1`xy+ 1px− 1py ≥ 0

fsy (y ≠ s, t) : 1`sy+(−1)− 1py ≥ 0

fxs (x ≠ s, t) : 1`xs+ 1px−(−1) ≥ 0

fty (y ≠ s, t) : 1`ty+ 0− 1py ≥ 0

fxt (x ≠ s, t) : 1`xt+ 1px− 0 ≥ 0

fst : 1`st+(−1)− 0 ≥ 0

fts : 1`ts+ 0−(−1) ≥ 0

`xy ≥ 0

EADS II 3 Duality

c©Harald Räcke 57/366

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy+1px−1py ≥ 0

fsy (y ≠ s, t) : 1`sy+ ps−1py ≥ 0

fxs (x ≠ s, t) : 1`xs+1px− ps ≥ 0

fty (y ≠ s, t) : 1`ty+ pt−1py ≥ 0

fxt (x ≠ s, t) : 1`xt+1px− pt ≥ 0

fst : 1`st+ ps− pt ≥ 0

fts : 1`ts+ pt− ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = −1.

EADS II 3 Duality

c©Harald Räcke 58/366

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy+1px−1py ≥ 0

`xy ≥ 0

ps = −1

pt = 0

EADS II 3 Duality

c©Harald Räcke 59/366

We can interpret the `xy value as assigning a length to every

edge.

The value (−px) for a variable, then can be seen as the distance

of x to t (where the distance from s to t is required to be 1 since

ps = −1).

The constraint (−px) ≤ `xy + (−py) then simply follows from a

triangle inequality

(d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

If we would have formulated the primal differently by

multiplying the equality-constraint by −1 we would have had

an easier interpretation of dual variables. Set ps = 1; pt = 0

and interpret px as the distance to t.

EADS II 3 Duality

c©Harald Räcke 60/366

We can interpret the `xy value as assigning a length to every

edge.

The value (−px) for a variable, then can be seen as the distance

of x to t (where the distance from s to t is required to be 1 since

ps = −1).

The constraint (−px) ≤ `xy + (−py) then simply follows from a

triangle inequality

(d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

If we would have formulated the primal differently by

multiplying the equality-constraint by −1 we would have had

an easier interpretation of dual variables. Set ps = 1; pt = 0

and interpret px as the distance to t.

EADS II 3 Duality

c©Harald Räcke 60/366

We can interpret the `xy value as assigning a length to every

edge.

The value (−px) for a variable, then can be seen as the distance

of x to t (where the distance from s to t is required to be 1 since

ps = −1).

The constraint (−px) ≤ `xy + (−py) then simply follows from a

triangle inequality

(d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

If we would have formulated the primal differently by

multiplying the equality-constraint by −1 we would have had

an easier interpretation of dual variables. Set ps = 1; pt = 0

and interpret px as the distance to t.

EADS II 3 Duality

c©Harald Räcke 60/366

We can interpret the `xy value as assigning a length to every

edge.

The value (−px) for a variable, then can be seen as the distance

of x to t (where the distance from s to t is required to be 1 since

ps = −1).

The constraint (−px) ≤ `xy + (−py) then simply follows from a

triangle inequality

(d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

If we would have formulated the primal differently by

multiplying the equality-constraint by −1 we would have had

an easier interpretation of dual variables. Set ps = 1; pt = 0

and interpret px as the distance to t.

EADS II 3 Duality

c©Harald Räcke 60/366

We can interpret the `xy value as assigning a length to every

edge.

The value (−px) for a variable, then can be seen as the distance

of x to t (where the distance from s to t is required to be 1 since

ps = −1).

The constraint (−px) ≤ `xy + (−py) then simply follows from a

triangle inequality

(d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

If we would have formulated the primal differently by

multiplying the equality-constraint by −1 we would have had

an easier interpretation of dual variables. Set ps = 1; pt = 0

and interpret px as the distance to t.

EADS II 3 Duality

c©Harald Räcke 60/366

One can show that the optimum LP-solution for the Maxflow

problem gives an integral assignment of variables.

This means px = −1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value −1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

EADS II 3 Duality

c©Harald Räcke 61/366

One can show that the optimum LP-solution for the Maxflow

problem gives an integral assignment of variables.

This means px = −1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value −1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

EADS II 3 Duality

c©Harald Räcke 61/366

One can show that the optimum LP-solution for the Maxflow

problem gives an integral assignment of variables.

This means px = −1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value −1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

EADS II 3 Duality

c©Harald Räcke 61/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an

arbitrary problem?

EADS II 3 Duality

c©Harald Räcke 62/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an

arbitrary problem?

EADS II 3 Duality

c©Harald Räcke 62/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an

arbitrary problem?

EADS II 3 Duality

c©Harald Räcke 62/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an

arbitrary problem?

EADS II 3 Duality

c©Harald Räcke 62/366

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack from for this problem is

Ax + Ems = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution.

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an

arbitrary problem?

EADS II 3 Duality

c©Harald Räcke 62/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Two phase algorithm

Suppose we want to maximize ctx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −
∑
i vi s.t. Ax + Emv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

EADS II 3 Duality

c©Harald Räcke 63/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{ctx,Ax = b;x ≥ 0} into

LP′ :=max{ctx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

EADS II 4 Degeneracy Revisited

c©Harald Räcke 64/366

Pertubation

Let B be index set of a basis with basic solution

x∗B = A−1
B b ≥ 0 (i.e. B is feasible)

Fix

b′ := b +AB


ε
...

εm

 for ε > 0 .

This is the pertubation that we are using.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 65/366

Pertubation

Let B be index set of a basis with basic solution

x∗B = A−1
B b ≥ 0 (i.e. B is feasible)

Fix

b′ := b +AB


ε
...

εm

 for ε > 0 .

This is the pertubation that we are using.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 65/366

Property I

The new LP is feasible because the set B of basis variables

provides a feasible basis:

A−1
B

b +AB

ε
...

εm


 = x∗B +


ε
...

εm

 ≥ 0 .

EADS II 4 Degeneracy Revisited

c©Harald Räcke 66/366

Property I

The new LP is feasible because the set B of basis variables

provides a feasible basis:

A−1
B

b +AB

ε
...

εm


 = x∗B +


ε
...

εm

 ≥ 0 .

EADS II 4 Degeneracy Revisited

c©Harald Räcke 66/366

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0

A−1
B̃

b +AB

ε
...

εm




i

= (A−1
B̃ b)i +

A−1
B̃ AB


ε
...

εm



i

< 0

Hence, B̃ is not feasible.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 67/366

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0A−1
B̃

b +AB

ε
...

εm




i

= (A−1
B̃ b)i +

A−1
B̃ AB


ε
...

εm



i

< 0

Hence, B̃ is not feasible.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 67/366

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0A−1
B̃

b +AB

ε
...

εm




i

= (A−1
B̃ b)i +

A−1
B̃ AB


ε
...

εm



i

< 0

Hence, B̃ is not feasible.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 67/366

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0A−1
B̃

b +AB

ε
...

εm




i

= (A−1
B̃ b)i +

A−1
B̃ AB


ε
...

εm



i

< 0

Hence, B̃ is not feasible.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 67/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A
−1
B̃ b +A

−1
B̃ AB


ε
...

εm


in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 68/366

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP’ without explicitly doing a perturbation.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 69/366

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP’ without explicitly doing a perturbation.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 69/366

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP’ without explicitly doing a perturbation.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 69/366

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (ĉe > 0, of

course).

If we do not have a choice for the leaving variable then LP’ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 70/366

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (ĉe > 0, of

course).

If we do not have a choice for the leaving variable then LP’ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 70/366

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (ĉe > 0, of

course).

If we do not have a choice for the leaving variable then LP’ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 70/366

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (ĉe > 0, of

course).

If we do not have a choice for the leaving variable then LP’ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 70/366

Lexicographic Pivoting

In the following we assume that b ≥ 0. This can be obtained by

replacing the initial system (AB | b) by (A−1
B A | A−1

B b) where B is

the index set of a feasible basis (found e.g. by the first phase of

the Two-phase algorithm).

Then the perturbed instance is

b′ = b +


ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 71/366

Lexicographic Pivoting

In the following we assume that b ≥ 0. This can be obtained by

replacing the initial system (AB | b) by (A−1
B A | A−1

B b) where B is

the index set of a feasible basis (found e.g. by the first phase of

the Two-phase algorithm).

Then the perturbed instance is

b′ = b +


ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 71/366

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has â`e < 0 and

minimizes

θ` = −
b̂`
â`e

= − (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 72/366

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has â`e < 0 and

minimizes

θ` = −
b̂`
â`e

= − (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 72/366

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has â`e < 0 and

minimizes

θ` = −
b̂`
â`e

= − (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 72/366

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has â`e < 0 and

minimizes

θ` = −
b̂`
â`e

= − (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 72/366

Lexicographic Pivoting

Definition 18
u ≤lex v if and only if the first component in which u and v differ

fulfills ui ≤ vi.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 73/366

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ`

= −

A−1
B

b +

ε
...

εm




`

(A−1
B A∗e)`

= −

A
−1
B (b | Em)



1

ε
...

εm




`

(A−1
B A∗e)`

= −`-th row of A−1
B (b | Em)

(A−1
B A∗e)`



1

ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 74/366

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` = −

A−1
B

b +

ε
...

εm




`

(A−1
B A∗e)`

= −

A
−1
B (b | Em)



1

ε
...

εm




`

(A−1
B A∗e)`

= −`-th row of A−1
B (b | Em)

(A−1
B A∗e)`



1

ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 74/366

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` = −

A−1
B

b +

ε
...

εm




`

(A−1
B A∗e)`

= −

A
−1
B (b | Em)



1

ε
...

εm




`

(A−1
B A∗e)`

= −`-th row of A−1
B (b | Em)

(A−1
B A∗e)`



1

ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 74/366

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` = −

A−1
B

b +

ε
...

εm




`

(A−1
B A∗e)`

= −

A
−1
B (b | Em)



1

ε
...

εm




`

(A−1
B A∗e)`

= −`-th row of A−1
B (b | Em)

(A−1
B A∗e)`



1

ε
...

εm



EADS II 4 Degeneracy Revisited

c©Harald Räcke 74/366

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector

−`-th row of A−1
B (b | Em)

(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` < 0.

This technique guarantees that in each step of the simplex

algorithm the objective function will increase.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 75/366

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector

−`-th row of A−1
B (b | Em)

(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` < 0.

This technique guarantees that in each step of the simplex

algorithm the objective function will increase.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 75/366

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector

−`-th row of A−1
B (b | Em)

(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` < 0.

This technique guarantees that in each step of the simplex

algorithm the objective function will increase.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 75/366

Remarks about Simplex

Observation

The simplex algorithm takes at most
(
n
m

)
iterations. Each

iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 76/366

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for

choosing entering and leaving variables) there exist lower bounds

that require the algorithm to have exponential running time

(Ω(2Ω(n))) (e.g. Klee Minty 1972).

EADS II 4 Degeneracy Revisited

c©Harald Räcke 77/366

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Ω(2Ω(nα)) for α > 0) (Friedmann,

Hansen, Zwick 2011).

EADS II 4 Degeneracy Revisited

c©Harald Räcke 78/366

Remarks about Simplex

Conjecture (Hirsch)

The edge-vertex graph of an m-facet polytope in d-dimensional

Euclidean space has diameter no more than m− d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form

O(poly(m,d)) is open.

EADS II 4 Degeneracy Revisited

c©Harald Räcke 79/366

5 Seidels LP-algorithm

ñ Suppose we want to solve max{ctx | Ax ≤ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (better bounds on the

running time exist, but will not be discussed here).

ñ The following algorithm runs in time O(m(d+ 1)!).
ñ It solves max{ctx | Ax ≤ b;−M ≤ xi ≤ M}. Here we added

so-called bounding box constraints for the variables xi to

simplify the description.

ñ We use H to denote the set of constraints (a set of

half-spaces of Rd). H does not include the bounding box

constraints.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 80/366

5 Seidels LP-algorithm

ñ Suppose we want to solve max{ctx | Ax ≤ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (better bounds on the

running time exist, but will not be discussed here).

ñ The following algorithm runs in time O(m(d+ 1)!).
ñ It solves max{ctx | Ax ≤ b;−M ≤ xi ≤ M}. Here we added

so-called bounding box constraints for the variables xi to

simplify the description.

ñ We use H to denote the set of constraints (a set of

half-spaces of Rd). H does not include the bounding box

constraints.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 80/366

5 Seidels LP-algorithm

ñ Suppose we want to solve max{ctx | Ax ≤ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (better bounds on the

running time exist, but will not be discussed here).

ñ The following algorithm runs in time O(m(d+ 1)!).
ñ It solves max{ctx | Ax ≤ b;−M ≤ xi ≤ M}. Here we added

so-called bounding box constraints for the variables xi to

simplify the description.

ñ We use H to denote the set of constraints (a set of

half-spaces of Rd). H does not include the bounding box

constraints.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 80/366

5 Seidels LP-algorithm

ñ Suppose we want to solve max{ctx | Ax ≤ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (better bounds on the

running time exist, but will not be discussed here).

ñ The following algorithm runs in time O(m(d+ 1)!).
ñ It solves max{ctx | Ax ≤ b;−M ≤ xi ≤ M}. Here we added

so-called bounding box constraints for the variables xi to

simplify the description.

ñ We use H to denote the set of constraints (a set of

half-spaces of Rd). H does not include the bounding box

constraints.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 80/366

5 Seidels LP-algorithm

ñ Suppose we want to solve max{ctx | Ax ≤ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (better bounds on the

running time exist, but will not be discussed here).

ñ The following algorithm runs in time O(m(d+ 1)!).
ñ It solves max{ctx | Ax ≤ b;−M ≤ xi ≤ M}. Here we added

so-called bounding box constraints for the variables xi to

simplify the description.

ñ We use H to denote the set of constraints (a set of

half-spaces of Rd). H does not include the bounding box

constraints.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 80/366

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H

4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}

5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)

6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh

9: solve athx = bh for some variable x`;
10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)

13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then solve problem on bounding box and return;

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ fulfills h then

7: return x̂∗

8: // optimal solution fulfills h with equality, i.e., athx = bh
9: solve athx = bh for some variable x`;

10: eliminate this variable in all constraints from Ĥ .

11: Transform box constraints for x` into normal constraints and

add them to Ĥ .

12: x̂∗ ← SeidelLP(Ĥ , d− 1)
13: add the value of x` to x̂∗ and return the solution

5 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(m).
ñ If d > 1 and m = 0 there are only the box constraints. We

select x∗j = M if cj ≥ 0, otw. we choose x∗j = −M. This

takes time O(d).
ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(dm) to eliminate x`. Then we make a recursive call that

takes time T(m+ 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will increase the

objective function.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 82/366

5 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(m).
ñ If d > 1 and m = 0 there are only the box constraints. We

select x∗j = M if cj ≥ 0, otw. we choose x∗j = −M. This

takes time O(d).
ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(dm) to eliminate x`. Then we make a recursive call that

takes time T(m+ 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will increase the

objective function.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 82/366

5 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(m).
ñ If d > 1 and m = 0 there are only the box constraints. We

select x∗j = M if cj ≥ 0, otw. we choose x∗j = −M. This

takes time O(d).
ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(dm) to eliminate x`. Then we make a recursive call that

takes time T(m+ 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will increase the

objective function.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 82/366

5 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(m).
ñ If d > 1 and m = 0 there are only the box constraints. We

select x∗j = M if cj ≥ 0, otw. we choose x∗j = −M. This

takes time O(d).
ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(dm) to eliminate x`. Then we make a recursive call that

takes time T(m+ 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will increase the

objective function.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 82/366

5 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(m).
ñ If d > 1 and m = 0 there are only the box constraints. We

select x∗j = M if cj ≥ 0, otw. we choose x∗j = −M. This

takes time O(d).
ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(dm) to eliminate x`. Then we make a recursive call that

takes time T(m+ 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will increase the

objective function.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 82/366

5 Seidels LP-algorithm

This gives the recurrence

T(m,d) =



O(m) if d = 1

O(d) if d > 1 and m = 0

O(d)+ T(m− 1, d)+
d
m (O(dm)+ T(m+ 1, d− 1)) otw.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 83/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).

ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1)

≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm

≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1)

for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d)

≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d) ≤ O(d)

≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d) ≤ O(d) ≤ Cd

≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d) ≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1)

for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ Let C be the constant in the O-notation.

ñ We show T(m,d) ≤ Cf(d)max(1,m− 1).
ñ d = 1:

T(m,1) ≤ Cm ≤ Cf(1)max(1,m− 1) for f(1) ≥ 2

ñ d > 1;m = 0 :

T(m,d) ≤ O(d) ≤ Cd ≤ Cf(d)max(1,m− 1) for f(d) ≥ d

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 84/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d)

= O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})

≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 1 :

T(1, d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

= O(d)+ T(0, d)+ d
m
(O(d)+ T(2, d− 1))

≤ C(d+ d+ d2 + df(d− 1)max{1,1})
≤ C(3d2 + df(d− 1))

≤ Cf(d)max{1,1− 1}

if f(d) ≥ df(d− 1)+ 3d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 85/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m = 2 :

T(2, d) = O(d)+ T(1, d)+ d
2
(O(2d)+ T(3, d− 1))

≤ O(d)+ [O(d)+ T(0, d)+ d(O(d)+ T(2, d− 1))]

+ d
2
(2Cd+ Cf(d− 1)2)

≤ 5Cd2 + Cdf(d− 1)+ Cf(d− 1)

≤ Cf(d)max{1,2− 1}

if f(d) ≥ (d+ 1)f (d− 1)+ 5d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 86/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ d > 1;m > 2 :

T(m,d) = O(d)+ T(m− 1, d)+ d
m
(O(dm)+ T(m+ 1, d− 1))

≤ O(d)+ Cf(d)(m− 2)+ d
m
(Cdm+ Cf(d− 1)m)

≤ 2Cd2 + Cf(d)(m− 2)+ Cdf(d− 1)

≤ Cf(d)(m− 1)

≤ Cf(d)max{1,m− 1}

if f(d) ≥ df(d− 1)+ 2d2.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 87/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d)

≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]

= 5d2 + (d+ 1)
[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]

= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)

= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

5 Seidels LP-algorithm

ñ Define f(1) = 5 · 12 and f(d) = (d+ 1)f (d− 1)+ 5d2 for d > 1.

Then

f(d) ≤ 5d2 + (d+ 1)f (d− 1)

= 5d2 + (d+ 1)
[
5(d− 1)2 + df(d− 2)

]
= 5d2 + (d+ 1)

[
5(d− 1)2 + d

[
5(d− 2)2 + (d− 1)f (d− 3)

]]
= 5d2 + 5(d+ 1)(d− 1)2 + 5(d+ 1)d(d− 2)2 + . . .
+ 5(d+ 1)d(d− 1) · . . . · 4 · 3 · 12

= 5(d+ 1)!
(

d2

(d+ 1)!
+ (d− 1)2

d!
+ (d− 2)2

(d− 1)!
+ · · · + 12

(d− (d− 2))!

)
= O((d+ 1)!)

since
∑
i≥1

i2
(i+1)! is a constant.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 88/366

Complexity

LP Decision Problem (LP decision)

ñ Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ R with

Ax = b, x ≥ 0?

ñ Note that allowing A,b to contain rational numbers does not

make a difference...

Is this problem in NP or even in P?

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 89/366

Complexity

LP Decision Problem (LP decision)

ñ Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ R with

Ax = b, x ≥ 0?

ñ Note that allowing A,b to contain rational numbers does not

make a difference...

Is this problem in NP or even in P?

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 89/366

Complexity

LP Decision Problem (LP decision)

ñ Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ R with

Ax = b, x ≥ 0?

ñ Note that allowing A,b to contain rational numbers does not

make a difference...

Is this problem in NP or even in P?

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 89/366

Complexity

LP Decision Problem (LP decision)

ñ Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ R with

Ax = b, x ≥ 0?

ñ Note that allowing A,b to contain rational numbers does not

make a difference...

Is this problem in NP or even in P?

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 89/366

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a| + 1)e + 1

ñ Let for a matrix M,

L(M) =
∑
i,j
(dlog2(|mij + 1|)e + 1)

ñ In order to show that LP-decision is in NP we show that if

there is a solution x then there exists a small solution for

which feasibility can be verified in polynomial time

(polynomial in the input size L([A|b])).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 90/366

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a| + 1)e + 1

ñ Let for a matrix M,

L(M) =
∑
i,j
(dlog2(|mij + 1|)e + 1)

ñ In order to show that LP-decision is in NP we show that if

there is a solution x then there exists a small solution for

which feasibility can be verified in polynomial time

(polynomial in the input size L([A|b])).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 90/366

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a| + 1)e + 1

ñ Let for a matrix M,

L(M) =
∑
i,j
(dlog2(|mij + 1|)e + 1)

ñ In order to show that LP-decision is in NP we show that if

there is a solution x then there exists a small solution for

which feasibility can be verified in polynomial time

(polynomial in the input size L([A|b])).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 90/366

Suppose that Ax = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = A−1
B b

and all other entries in x are 0.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 91/366

Suppose that Ax = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = A−1
B b

and all other entries in x are 0.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 91/366

Size of a Basic Feasible Solution

Lemma 19
Let A ∈ Zm×m be an invertable matrix and let b ∈ Zm. Further

define L′ = L([A | b])+m log2m. Then a solution to Ax = b has

rational components xj of the form
Dj
D , where |Dj| ≤ 2L

′
and

|D| ≤ 2L
′
.

Proof:

Cramers rules says that we can compute xj as

xj =
det(Bj)
det(A)

where Bj is the matrix obtained from A by replacing the j-th
column by the vector b.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 92/366

Size of a Basic Feasible Solution

Lemma 19
Let A ∈ Zm×m be an invertable matrix and let b ∈ Zm. Further

define L′ = L([A | b])+m log2m. Then a solution to Ax = b has

rational components xj of the form
Dj
D , where |Dj| ≤ 2L

′
and

|D| ≤ 2L
′
.

Proof:

Cramers rules says that we can compute xj as

xj =
det(Bj)
det(A)

where Bj is the matrix obtained from A by replacing the j-th
column by the vector b.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 92/366

Bounding the Determinant

Observe that

|det(A)|

=

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣

≤
∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b])

≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L

≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Observe that

|det(A)| =

∣∣∣∣∣∣ ∑
π∈Sm

∏
1≤i≤m

sgn(π)aiπ(i)

∣∣∣∣∣∣
≤

∑
π∈Sm

∏
1≤i≤m

|aiπ(i)|

≤m! · 2L([A|b]) ≤mm2L ≤ 2L
′
.

Analogously for det(Bj).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 93/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)|

≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖

≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm

≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most

2L([A|b]).

Then, Hadamards inequality gives

|det(A)| ≤
m∏
i=1

‖A∗i‖ ≤
m∏
i=1

(
√
mZ)

≤mm/2Zm ≤ 2mL([A|b])+m log2m

which also gives an encoding length polynomial in the input

length L([A | b]).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 94/366

Hadamards Inequality

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)
|

Hadamards inequality says that the red volume is smaller than the

volume in the black cube (if ‖e1‖ = ‖a1‖, ‖e2‖ = ‖a2‖,
‖e3‖ = ‖a3‖).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 95/366

This means if Ax = b, x ≥ 0 is feasible we only need to consider

vectors x where an entry xj can be represented by a rational

number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the

input-length L.

For a given vector x of polynomial length we can check for

feasibility in polynomial time.

Hence, LP decision is in NP.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 96/366

This means if Ax = b, x ≥ 0 is feasible we only need to consider

vectors x where an entry xj can be represented by a rational

number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the

input-length L.

For a given vector x of polynomial length we can check for

feasibility in polynomial time.

Hence, LP decision is in NP.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 96/366

This means if Ax = b, x ≥ 0 is feasible we only need to consider

vectors x where an entry xj can be represented by a rational

number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the

input-length L.

For a given vector x of polynomial length we can check for

feasibility in polynomial time.

Hence, LP decision is in NP.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 96/366

This means if Ax = b, x ≥ 0 is feasible we only need to consider

vectors x where an entry xj can be represented by a rational

number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the

input-length L.

For a given vector x of polynomial length we can check for

feasibility in polynomial time.

Hence, LP decision is in NP.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 96/366

This means if Ax = b, x ≥ 0 is feasible we only need to consider

vectors x where an entry xj can be represented by a rational

number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the

input-length L.

For a given vector x of polynomial length we can check for

feasibility in polynomial time.

Hence, LP decision is in NP.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 96/366

Reducing LP-solving to LP decision.
Given an LP max{ctx | Ax = b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint −ctx+δ = M; δ ≥ 0 or (ctx ≥ M). Then checking

for feasibility shows whether optimum solution is larger or

smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥

1
2L′

.

Here we use L′ = L([A | b | c])+n log2n (the input size plus

n log2n).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 97/366

Reducing LP-solving to LP decision.
Given an LP max{ctx | Ax = b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint −ctx+δ = M; δ ≥ 0 or (ctx ≥ M). Then checking

for feasibility shows whether optimum solution is larger or

smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥

1
2L′

.

Here we use L′ = L([A | b | c])+n log2n (the input size plus

n log2n).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 97/366

Reducing LP-solving to LP decision.
Given an LP max{ctx | Ax = b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint −ctx+δ = M; δ ≥ 0 or (ctx ≥ M). Then checking

for feasibility shows whether optimum solution is larger or

smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥

1
2L′

.

Here we use L′ = L([A | b | c])+n log2n (the input size plus

n log2n).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 97/366

Reducing LP-solving to LP decision.
Given an LP max{ctx | Ax = b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint −ctx+δ = M; δ ≥ 0 or (ctx ≥ M). Then checking

for feasibility shows whether optimum solution is larger or

smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥

1
2L′

.

Here we use L′ = L([A | b | c])+n log2n (the input size plus

n log2n).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 97/366

Reducing LP-solving to LP decision.
Given an LP max{ctx | Ax = b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint −ctx+δ = M; δ ≥ 0 or (ctx ≥ M). Then checking

for feasibility shows whether optimum solution is larger or

smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥

1
2L′

.

Here we use L′ = L([A | b | c])+n log2n (the input size plus

n log2n).

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 97/366

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint ctx ≥ Mmax + 1 and check for feasibility.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 98/366

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint ctx ≥ Mmax + 1 and check for feasibility.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 98/366

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint ctx ≥ Mmax + 1 and check for feasibility.

EADS II 5 Seidels LP-algorithm

c©Harald Räcke 98/366

Ellipsoid Method

ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 99/366

Issues/Questions:

ñ How do you choose the first Ellipsoid? What is its volume?

ñ What if the polytop K is unbounded?

ñ How do you measure progress? By how much does the

volume decrease in each iteration?

ñ When can you stop? What is the minimum volume of a

non-empty polytop?

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 100/366

Definition 20
A mapping f : Rn → Rn with f(x) = Lx + t, where L is an

invertible matrix is called an affine transformation.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 101/366

Definition 21
A ball in Rn with center c and radius r is given by

B(c, r) = {x | (x − c)t(x − c) ≤ r2}
= {x |

∑
i
(x − c)2i /r2 ≤ 1}

B(0,1) is called the unit ball.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 102/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1))

= {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}

= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}

= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 103/366

Lemma 23
Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)|vol(K) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 104/366

n-dimensional volume

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)
|

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 105/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c
a

ĉ

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

a

ĉ

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

a

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

a

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

c′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 106/366

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.
ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 107/366

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.
ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 107/366

The Easy Case

ñ The ellipsoid Ê′ is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix Q̂′
−1

is of the form

Q̂′
−1 =



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 108/366

The Easy Case

ñ The ellipsoid Ê′ is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix Q̂′
−1

is of the form

Q̂′
−1 =



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 108/366

The Easy Case

ñ The ellipsoid Ê′ is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix Q̂′
−1

is of the form

Q̂′
−1 =



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 108/366

The Easy Case

ñ (e1 − ĉ′)tQ̂′
−1
(e1 − ĉ′) = 1 gives

1− t
0

...

0



t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2


·



1− t
0

...

0

 = 1

ñ This gives (1− t)2 = a2.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 109/366

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0

...

0



t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2


·



−t
1

0

...

0


= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2

= 1− t2

(1− t)2 =
1− 2t
(1− t)2

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 110/366

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0

...

0



t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2


·



−t
1

0

...

0


= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2

= 1− 2t
(1− t)2

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 110/366

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives

−t
1

0

...

0



t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2


·



−t
1

0

...

0


= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2 =
1− 2t
(1− t)2

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 110/366

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂)| ,

where Q̂′ = L̂′tL̂′.
ñ This gives

L̂′
−1 =



1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b


and L̂′ =



a 0 . . . 0

0 b
. . .

...

...
. . .

. . . 0

0 . . . 0 b



EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 111/366

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂)| ,

where Q̂′ = L̂′tL̂′.
ñ This gives

L̂′
−1 =



1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b


and L̂′ =



a 0 . . . 0

0 b
. . .

...

...
. . .

. . . 0

0 . . . 0 b



EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 111/366

The Easy Case

vol(Ê′)

= vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 112/366

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|

= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 112/366

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 112/366

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 112/366

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 112/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)

= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

d vol(Ê)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

− (n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 113/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a

=
√

1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a =
√

1− t

= n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a =
√

1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a =
√

1− t = n
n+ 1

and b =

1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a =
√

1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a =
√

1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 114/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n

=
(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 115/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

a

ĉ′

Ê′

Ē′E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

ĉ′

Ê′

Ē′E′

a

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

a

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

c̄′

Ê′

Ē′

E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

Ê′ Ē′E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

c′

Ê′ Ē′

E′

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 116/366

e−
1

2(n+1)

≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 117/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H)

= {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H)

= {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}

= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}

= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}

= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}

= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y))− c) ≤ 0}
= {y | at(f (y))− c) ≤ 0}
= {y | at(Ly + c)− c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 118/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′

= R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′

= R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1

= − 1
n+ 1

Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′

= f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′)

= L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

The Ellipsoid Algorithm

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 119/366

For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.

Note that

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 120/366

For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.

Note that

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 120/366

6 The Ellipsoid Algorithm

Ē′

= R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | (yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | (yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 121/366

6 The Ellipsoid Algorithm

Hence,

Q̄′

= RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 122/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 122/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 122/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)

= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 122/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 122/366

6 The Ellipsoid Algorithm

Hence,

Q̄′

= RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)

= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 123/366

6 The Ellipsoid Algorithm

E′

= L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | (yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | (yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | (yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | (yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}

= {y | (yt(LQ̄′Lt︸ ︷︷ ︸
Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | (yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | (yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 124/366

6 The Ellipsoid Algorithm

Hence,

Q′

= LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 125/366

6 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 125/366

6 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 125/366

6 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 125/366

Repeat: Size of basic solutions

Lemma 24
Let P = {x ∈ Rn | Ax ≤ b} be a bounded polytop. Let 〈amax〉 be

the maximum encoding length of an entry in A. Then every entry

xi in a basic solution fulfills |xi| =
Dj
D with

Dj ,D ≤ 22n〈amax〉+n log2 n.

In the following we use δ := 22n〈amax〉+n log2 n.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 126/366

Repeat: Size of basic solutions

Lemma 24
Let P = {x ∈ Rn | Ax ≤ b} be a bounded polytop. Let 〈amax〉 be

the maximum encoding length of an entry in A. Then every entry

xi in a basic solution fulfills |xi| =
Dj
D with

Dj ,D ≤ 22n〈amax〉+n log2 n.

In the following we use δ := 22n〈amax〉+n log2 n.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 126/366

Repeat: Size of basic solutions

Proof: Let Ā = (A| −A|Im) Then the determinant of the matrices

ĀB and B̄j can become at most

det(ĀB) ≤ ‖ ~̀max‖2n ≤ 22n〈amax〉+n log2 n ,

where ~̀max is the longest column-vector that can be obtained

after deleting all but 2n rows and columns from Ā. This holds

because columns from Im selected when going from Ā to ĀB will

not increase the determinant. Only the at most 2n columns from

the matrices A and −A that Ā consists of will contribute.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 127/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded.

In this case every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most (nδ)nB(0,1).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 128/366

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded polytop.

Let 〈amax〉 be the encoding length of the largest entry in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ


1

...

1


}
,

where λ = δ+ 1.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 129/366

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded polytop.

Let 〈amax〉 be the encoding length of the largest entry in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ


1

...

1


}
,

where λ = δ+ 1.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 129/366

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded polytop.

Let 〈amax〉 be the encoding length of the largest entry in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ


1

...

1


}
,

where λ = δ+ 1.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 129/366

Lemma 25
Pλ is feasible if and only if P is feasible.

⇐= : obvious!

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 130/366

Lemma 25
Pλ is feasible if and only if P is feasible.

⇐= : obvious!

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 130/366

=⇒:

Consider the polytops

P̄ =
{
x | (A| −A|Im)x = b;x ≥ 0

}
and

P̄λ =
{
x | (A| −A|Im)x = b +

1
λ


1

...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded. Use Ā = (A| −A|Im).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 131/366

=⇒:

Consider the polytops

P̄ =
{
x | (A| −A|Im)x = b;x ≥ 0

}
and

P̄λ =
{
x | (A| −A|Im)x = b +

1
λ


1

...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded. Use Ā = (A| −A|Im).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 131/366

=⇒:

Consider the polytops

P̄ =
{
x | (A| −A|Im)x = b;x ≥ 0

}
and

P̄λ =
{
x | (A| −A|Im)x = b +

1
λ


1

...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded. Use Ā = (A| −A|Im).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 131/366

=⇒:

Consider the polytops

P̄ =
{
x | (A| −A|Im)x = b;x ≥ 0

}
and

P̄λ =
{
x | (A| −A|Im)x = b +

1
λ


1

...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded. Use Ā = (A| −A|Im).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 131/366

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B


1

...

1


where Ā = (A| −A|Im). (The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 132/366

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B


1

...

1


where Ā = (A| −A|Im). (The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 132/366

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B


1

...

1


where Ā = (A| −A|Im). (The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 132/366

But Cramers rule gives that (Ā−1
B b)i < 0 implies that

(Ā−1
B b)i ≤ −

1
det(ĀB)

and (Ā−1
B ~1)i ≤ det(B̄j), where Bj is obtained

by replacing the j-th column of ĀB by b.

Then the determinant of the matrices ĀB and B̄j can become at

most δ.

Since, we chose λ = δ+ 1 this gives a contradiction.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 133/366

But Cramers rule gives that (Ā−1
B b)i < 0 implies that

(Ā−1
B b)i ≤ −

1
det(ĀB)

and (Ā−1
B ~1)i ≤ det(B̄j), where Bj is obtained

by replacing the j-th column of ĀB by b.

Then the determinant of the matrices ĀB and B̄j can become at

most δ.

Since, we chose λ = δ+ 1 this gives a contradiction.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 133/366

But Cramers rule gives that (Ā−1
B b)i < 0 implies that

(Ā−1
B b)i ≤ −

1
det(ĀB)

and (Ā−1
B ~1)i ≤ det(B̄j), where Bj is obtained

by replacing the j-th column of ĀB by b.

Then the determinant of the matrices ĀB and B̄j can become at

most δ.

Since, we chose λ = δ+ 1 this gives a contradiction.

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 133/366

Lemma 26
If Pλ is feasible then it contains a ball of radius r := 1/λ ≥ 1/(2δ).
This has a volume of at least 1

(2δ)n · vol(B(0,1)).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 134/366

Lemma 26
If Pλ is feasible then it contains a ball of radius r := 1/λ ≥ 1/(2δ).
This has a volume of at least 1

(2δ)n · vol(B(0,1)).

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 134/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i

> 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)

≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · 2nδn

)
≤ 2n ln(δ)+n ln(n)

≤ 4n2〈amax〉 + 3n2 log2(n)

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 135/366

Ellipsoid Algorithm

Input: point c ∈ Rn, radii R and r , convex set K ⊆ Rn

Output: point x ∈ K

ñ check whether c ∈ K; if yes output c
ñ otherwise choose a violated hyperplane a;

c′ = c − 1
n+ 1

Qa√
atQa

Q′ = n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)
ñ if det(Q′) ≤

√
rn output fail

ñ repeat

EADS II 6 The Ellipsoid Algorithm

c©Harald Räcke 136/366

7 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 137/366

7 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 137/366

7 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 137/366

7 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 137/366

7 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 137/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 138/366

7 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points

x0 = e
n , x

1, x2, . . . with

ctxk ≤ e−
k

5n ctx0

A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can

“snap” to an optimum vertex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 139/366

7 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points

x0 = e
n , x

1, x2, . . . with

ctxk ≤ e−
k

5n ctx0

A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can

“snap” to an optimum vertex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 139/366

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 140/366

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 140/366

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 140/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 141/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 141/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 141/366

The Transformation

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 142/366

The Transformation

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 142/366

The Transformation

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 142/366

The Transformation

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 142/366

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctFx̄(x) | AFx̄(x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

Since the optimum solution is 0 this is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 143/366

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctFx̄(x) | AFx̄(x);x ∈ ∆}

=min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

Since the optimum solution is 0 this is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 143/366

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctFx̄(x) | AFx̄(x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

Since the optimum solution is 0 this is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 143/366

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctFx̄(x) | AFx̄(x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

Since the optimum solution is 0 this is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 143/366

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctFx̄(x) | AFx̄(x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

Since the optimum solution is 0 this is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 143/366

7 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 144/366

7 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 144/366

7 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 144/366

7 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 144/366

7 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖.

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 145/366

7 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖.

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 145/366

7 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖.

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 145/366

7 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖.

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 145/366

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the ellipsoid).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
e


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 146/366

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the ellipsoid).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
e


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 146/366

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the ellipsoid).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
e


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 146/366

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the ellipsoid).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
e


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 146/366

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the ellipsoid).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
e


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 146/366

7 Karmarkar’s Algorithm

We get the new point

x̂(ρ) = e
n
+ ρ d̂
‖d‖

for ρ < r .

Choose ρ = α
n < αr with α = 1/3.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 147/366

7 Karmarkar’s Algorithm

We get the new point

x̂(ρ) = e
n
+ ρ d̂
‖d‖

for ρ < r .

Choose ρ = α
n < αr with α = 1/3.

EADS II 7 Karmarkar’s Algorithm

c©Harald Räcke 147/366

8 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 148/366

8 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 148/366

8 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 148/366

8 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 148/366

8 Karmarkar’s Algorithm

We want to solve the following linear program:

ñ minv = ctx subject to Ax = 0 and x ∈ ∆.

ñ Here ∆ = {x ∈ Rn | etx = 1, x ≥ 0} with et = (1, . . . ,1)
denotes the standard simplex in Rn.

Further assumptions:

1. A is an m×n-matrix with rank m.

2. Ae = 0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 148/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax ≤ 0;x ≥ 0}.
ñ Multiply c by −1 and do a minimization. ⇒ minimization

problem
ñ We can check for feasibility by using the two phase algorithm

(first optimizing a different feasible LP; if the solution is

non-zero the original LP is infeasible). Therefore, we can

assume that the LP is feasible.
ñ Compute the dual; pack primal and dual into one LP and

minimize the duality gap. ⇒ optimum is 0

ñ Add a new variable pair x`, x′` (both restricted to be positive)

and the constraint
∑
i xi = 1. ⇒ solution lies in simplex

ñ Add −(
∑
i xi)bi = −bi to every constraint. ⇒ vector b

becomes 0

ñ If A does not have full column rank we can delete constraints

(or conclude that the LP is infeasible). A has full row rank

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 149/366

8 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points

x̄(0) = e
n , x

(1), x(2), . . . with

ctxk ≤ 2−Θ(L)ctx0

For k = Θ(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can

“snap” to an optimum vertex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 150/366

8 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points

x̄(0) = e
n , x

(1), x(2), . . . with

ctxk ≤ 2−Θ(L)ctx0

For k = Θ(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) I can

“snap” to an optimum vertex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 150/366

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 151/366

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 151/366

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so

that the current point x̄ moves to the center.

2. Project the optimization direction c onto the feasible region.

Determine a distance to travel along this direction such that

you do not leave the simplex (and you do not touch the

border). x̂ is the point you reached.

3. Do a backtransformation to transform x̂ into your new point

x′.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 151/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 152/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 152/366

The Transformation

Let Ȳ = diag(x̄) the diagonal matrix with entries x̄ on the

diagonal.

Define

Fx̄ : x ,
Ȳ−1x
etȲ−1x

.

The inverse function is

F−1
x̄ : x̂ ,

Ȳ x̂
etȲ x̂

.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 152/366

The Transformation

Easy to check:

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 153/366

The Transformation

Easy to check:

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 153/366

The Transformation

Easy to check:

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 153/366

The Transformation

Easy to check:

ñ F−1
x̄ really is the inverse of Fx̄.

ñ x̄ is mapped to e/n.

ñ A unit vectors ei is mapped to itself.

ñ All nodes of the simplex are mapped to the simplex.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 153/366

8 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1(∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 154/366

8 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x);x ∈ ∆}

=min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1(∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 154/366

8 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1(∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 154/366

8 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1(∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 154/366

8 Karmarkar’s Algorithm

After the transformation we have the problem

min{ctF−1
x̄ (x) | AF−1

x̄ (x);x ∈ ∆} =min
{ctȲx
etȲx

| AȲx
etȲx

;x ∈ ∆
}

This holds since the back-transformation “reaches” every point in

∆ (i.e. F−1(∆) = ∆).

Since the optimum solution is 0 this problem is the same as

min{ĉtx | Âx = 0, x ∈ ∆}

with ĉ = Ȳ tc = Ȳ c and Â = AȲ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 154/366

8 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 155/366

8 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 155/366

8 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 155/366

8 Karmarkar’s Algorithm

When computing x̂ we do not want to leave the simplex or touch

its boundary.

For this we compute the radius of a ball that completely lies in the

simplex.

B
(
e
n
,ρ
)
=
{
x ∈ Rn |

∥∥∥∥x − en
∥∥∥∥ ≤ ρ} .

We are looking for the largest radius r such that

B
(
e
n
, r
)
∩
{
x | etx = 1

}
⊆ ∆.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 155/366

8 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖. (r is the distance between

the center e/n and the center of the (n− 1)-dimensional simplex

obtained by intersecting a side (xi = 0) of the unit cube with ∆.)

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 156/366

8 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖. (r is the distance between

the center e/n and the center of the (n− 1)-dimensional simplex

obtained by intersecting a side (xi = 0) of the unit cube with ∆.)

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 156/366

8 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖. (r is the distance between

the center e/n and the center of the (n− 1)-dimensional simplex

obtained by intersecting a side (xi = 0) of the unit cube with ∆.)

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 156/366

8 Karmarkar’s Algorithm

This holds for r = ‖ en − (e− e1) 1
n−1‖. (r is the distance between

the center e/n and the center of the (n− 1)-dimensional simplex

obtained by intersecting a side (xi = 0) of the unit cube with ∆.)

This gives r = 1√
n(n−1)

.

Now we consider the problem

min{ĉtx | Âx = 0, x ∈ B(e/n, r)∩∆}

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 156/366

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
et


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 157/366

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
et


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 157/366

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
et


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 157/366

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
et


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 157/366

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of −ĉ (starting from the

center of the simplex).

However, doing this may violate constraints Âx = 0 or the

constraint x ∈ ∆.

Therefore we first project ĉ on the nullspace of

B =
Â
et


We use

P = I − Bt(BBt)−1B

Then

d̂ = Pĉ

is the required projection.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 157/366

8 Karmarkar’s Algorithm

We get the new point

x̂(ρ) = e
n
− ρ d̂
‖d‖

for ρ < r .

Choose ρ = αr with α = 1/4.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 158/366

8 Karmarkar’s Algorithm

We get the new point

x̂(ρ) = e
n
− ρ d̂
‖d‖

for ρ < r .

Choose ρ = αr with α = 1/4.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 158/366

8 Karmarkar’s Algorithm

Iteration of Karmarkar’s algorithm:

ñ Current solution x̄. Ȳ := diag(x̄1, . . . , x̄n).
ñ Transform the problem via Fx̄(x) = Ȳ−1x

et Ȳ−1x . Let ĉ = Ȳ c, and

Â = AȲ .

ñ Compute

d = (I − Bt(BBt)−1B)ĉ ,

where B =
Â
et

.

ñ Set

x̂ = e
n
− ρ d
‖d‖ ,

with ρ = αr with α = 1/4 and r = 1/
√
n(n− 1).

ñ Compute x̄new = F−1
x̄ (x̂).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 159/366

The Simplex

x1

x2

x3

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 160/366

Lemma 27
The new point x̂ in the transformed space is the point that

minimizes the cost ĉtx among all feasible points in B(en , ρ).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 161/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1

we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t

= (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0

or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

Proof: Let z be another feasible point in B(en , ρ).

As Âz = 0, Âx̂ = 0, etz = 1, etx̂ = 1 we have

B(x̂ − z) = 0 .

Further,

(ĉ − d)t = (ĉ − Pĉ)t

= (Bt(BBt)−1Bĉ)t

= ĉtBt(BBt)−1B

Hence, we get

(ĉ − d)t(x̂ − z) = 0 or ĉt(x̂ − z) = dt(x̂ − z)

which means that the cost-difference between x̂ and z is the same

measured w.r.t. the cost-vector ĉ or the projected cost-vector d.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 162/366

But

dt

‖d‖ (x̂ − z)

= dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)
= dt

‖d‖

(
e
n
− z

)
− ρ < 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 163/366

But

dt

‖d‖ (x̂ − z) =
dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)

= dt

‖d‖

(
e
n
− z

)
− ρ < 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 163/366

But

dt

‖d‖ (x̂ − z) =
dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)
= dt

‖d‖

(
e
n
− z

)
− ρ

< 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 163/366

But

dt

‖d‖ (x̂ − z) =
dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)
= dt

‖d‖

(
e
n
− z

)
− ρ < 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 163/366

But

dt

‖d‖ (x̂ − z) =
dt

‖d‖

(
e
n
− ρ d
‖d‖ − z

)
= dt

‖d‖

(
e
n
− z

)
− ρ < 0

as e
n − z is a vector of length at most ρ.

This gives d(x̂ − z) ≤ 0 and therefore ĉx̂ ≤ ĉz.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 163/366

In order to measure the progress of the algorithm we introduce a

potential function f :

f(x)

=
∑
j

ln(
ctx
xj
) = n ln(ctx)−

∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).
ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 164/366

In order to measure the progress of the algorithm we introduce a

potential function f :

f(x) =
∑
j

ln(
ctx
xj
)

= n ln(ctx)−
∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).
ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 164/366

In order to measure the progress of the algorithm we introduce a

potential function f :

f(x) =
∑
j

ln(
ctx
xj
) = n ln(ctx)−

∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).
ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 164/366

In order to measure the progress of the algorithm we introduce a

potential function f :

f(x) =
∑
j

ln(
ctx
xj
) = n ln(ctx)−

∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).

ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 164/366

In order to measure the progress of the algorithm we introduce a

potential function f :

f(x) =
∑
j

ln(
ctx
xj
) = n ln(ctx)−

∑
j

ln(xj) .

ñ The function f is invariant to scaling (i.e., f(kx) = f(x)).
ñ The potential function essentially measures cost (note the

term n ln(ctx)) but it penalizes us for choosing xj values

very small (by the term −
∑
j ln(xj); note that − ln(xj) is

always positive).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 164/366

For a point z in the transformed space we use the potential

function

f̂ (z)

:= f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z))

= f(Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

)

=
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

For a point z in the transformed space we use the potential

function

f̂ (z) := f(F−1
x̄ (z)) = f(

Ȳz
etȲ z

) = f(Ȳz)

=
∑
j

ln(
ctȲ z
x̄jzj

) =
∑
j

ln(
ĉtz
zj
)−

∑
j

ln x̄j

Observation:

This means the potential of a point in the transformed space is

simply the potential of its pre-image under F .

Note that if we are interested in potential-change we can ignore

the additive term above. Then f and f̂ have the same form; only

c is replaced by ĉ.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 165/366

The basic idea is to show that one iteration of Karmarkar results

in a constant decrease of f̂ . This means

f̂ (x̂) ≤ f̂ (e
n
)− δ ,

where δ is a constant.

This gives

f(x̄new) ≤ f(x̄)− δ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 166/366

The basic idea is to show that one iteration of Karmarkar results

in a constant decrease of f̂ . This means

f̂ (x̂) ≤ f̂ (e
n
)− δ ,

where δ is a constant.

This gives

f(x̄new) ≤ f(x̄)− δ .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 166/366

Lemma 28
There is a feasible point z (i.e., Âz = 0) in B(en , ρ)∩∆ that has

f̂ (z) ≤ f̂ (e
n
)− δ

with δ = ln(1+α).

Note that this shows the existence of a good point within the ball.

In general it will be difficult to find this point.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 167/366

Lemma 28
There is a feasible point z (i.e., Âz = 0) in B(en , ρ)∩∆ that has

f̂ (z) ≤ f̂ (e
n
)− δ

with δ = ln(1+α).

Note that this shows the existence of a good point within the ball.

In general it will be difficult to find this point.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 167/366

Let z∗ be the feasible point in the transformed space where ĉx is

minimized. (Note that in contrast x̂ is the point in the intersection

of the feasible region and B(en , ρ) that minimizes this function; in

general z∗ ≠ x̂)

z∗ must lie at the boundary of the simplex. This means

z∗ ∉ B(en , ρ).

The point z we want to use lies farthest in the direction from e
n to

z∗, namely

z = (1− λ) e
n
+ λz∗

for some positive λ < 1.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 168/366

Let z∗ be the feasible point in the transformed space where ĉx is

minimized. (Note that in contrast x̂ is the point in the intersection

of the feasible region and B(en , ρ) that minimizes this function; in

general z∗ ≠ x̂)

z∗ must lie at the boundary of the simplex. This means

z∗ ∉ B(en , ρ).

The point z we want to use lies farthest in the direction from e
n to

z∗, namely

z = (1− λ) e
n
+ λz∗

for some positive λ < 1.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 168/366

Let z∗ be the feasible point in the transformed space where ĉx is

minimized. (Note that in contrast x̂ is the point in the intersection

of the feasible region and B(en , ρ) that minimizes this function; in

general z∗ ≠ x̂)

z∗ must lie at the boundary of the simplex. This means

z∗ ∉ B(en , ρ).

The point z we want to use lies farthest in the direction from e
n to

z∗, namely

z = (1− λ) e
n
+ λz∗

for some positive λ < 1.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 168/366

Let z∗ be the feasible point in the transformed space where ĉx is

minimized. (Note that in contrast x̂ is the point in the intersection

of the feasible region and B(en , ρ) that minimizes this function; in

general z∗ ≠ x̂)

z∗ must lie at the boundary of the simplex. This means

z∗ ∉ B(en , ρ).

The point z we want to use lies farthest in the direction from e
n to

z∗, namely

z = (1− λ) e
n
+ λz∗

for some positive λ < 1.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 168/366

Hence,

ĉtz = (1− λ)ĉt e
n
+ λĉtz∗

The optimum cost (at z∗) is zero.

Therefore,
ĉt en
ĉtz

= 1
1− λ

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 169/366

Hence,

ĉtz = (1− λ)ĉt e
n
+ λĉtz∗

The optimum cost (at z∗) is zero.

Therefore,
ĉt en
ĉtz

= 1
1− λ

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 169/366

Hence,

ĉtz = (1− λ)ĉt e
n
+ λĉtz∗

The optimum cost (at z∗) is zero.

Therefore,
ĉt en
ĉtz

= 1
1− λ

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 169/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z)

=
∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

The improvement in the potential function is

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(
ĉt en

1
n
)−

∑
j

ln(
ĉtz
zj
)

=
∑
j

ln(
ĉt en
ĉtz

·
zj
1
n
)

=
∑
j

ln(
n

1− λzj)

=
∑
j

ln(
n

1− λ((1− λ)
1
n
+ λz∗j))

=
∑
j

ln(1+ nλ
1− λz

∗
j)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 170/366

We can use the fact that for non-negative si∑
i ln(1 + si) ≥ ln(1 +

∑
i si)

This gives

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(1+ nλ
1− λz

∗
j)

≥ ln(1+ nλ
1− λ)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 171/366

We can use the fact that for non-negative si∑
i ln(1 + si) ≥ ln(1 +

∑
i si)

This gives

f̂ (
e
n
)− f̂ (z)

=
∑
j

ln(1+ nλ
1− λz

∗
j)

≥ ln(1+ nλ
1− λ)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 171/366

We can use the fact that for non-negative si∑
i ln(1 + si) ≥ ln(1 +

∑
i si)

This gives

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(1+ nλ
1− λz

∗
j)

≥ ln(1+ nλ
1− λ)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 171/366

We can use the fact that for non-negative si∑
i ln(1 + si) ≥ ln(1 +

∑
i si)

This gives

f̂ (
e
n
)− f̂ (z) =

∑
j

ln(1+ nλ
1− λz

∗
j)

≥ ln(1+ nλ
1− λ)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 171/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr

= ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ

= ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖

= ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖

≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n.

Since r = 1/
√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ

≥ 1+ nα
n−α− 1

≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1

≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

In order to get further we need a bound on λ:

αr = ρ = ‖z − e/n‖ = ‖λ(z∗ − e/n)‖ ≤ λR

Here R is the radius of the ball around e
n that contains the whole

simplex.

R =
√
(n− 1)/n. Since r = 1/

√
(n−1)n we have R/r = n− 1 and

λ ≥ α/(n− 1)

Then

1+n λ
1− λ ≥ 1+ nα

n−α− 1
≥ 1+α

This gives the lemma.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 172/366

Lemma 29
If we choose α = 1/4 and n ≥ 4 in Karmarkar’s algorithm the

point x̂ satisfies

f̂ (x̂) ≤ f̂ (e
n
)− δ

with δ = 1/10.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 173/366

Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

Proof:

Define

g(x) =

n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

Proof:

Define

g(x) = n ln
ĉtx
ĉt en

= n(ln ĉtx − ln ĉt
e
n
) .

This is the change in the cost part of the potential function when

going from the center e
n to the point x in the transformed space.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 174/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂)

= [f̂ (e
n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We want to derive a lower bound on

f̂ (
e
n
)− f̂ (x̂) = [f̂ (e

n
)− f̂ (z)]

+ [f̂ (z)− (f̂ (e
n
)+ g(z))]

− [f̂ (x̂)− (f̂ (e
n
)+ g(x̂))]

+ [g(z)− g(x̂)]

where z is the point in the ball where f̂ achieves its minimum.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 175/366

We have

[f̂ (
e
n
)− f̂ (z)] ≥ ln(1+α)

by the previous lemma.

We have

[g(z)− g(x̂)] ≥ 0

since x̂ is the point with minimum cost in the ball, and g is

monotonically increasing with cost.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 176/366

We have

[f̂ (
e
n
)− f̂ (z)] ≥ ln(1+α)

by the previous lemma.

We have

[g(z)− g(x̂)] ≥ 0

since x̂ is the point with minimum cost in the ball, and g is

monotonically increasing with cost.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 176/366

For a point in the ball we have

f̂ (w)− (f̂ (e
n
)+ g(w)) = −

∑
j

ln
wj

1
n

(The increase in penalty when going from e
n to w).

This is at most β2

2(1−β) with β = nαr .

Hence,

f̂ (
e
n
)− f̂ (x̂) ≥ ln(1+α)− β2

(1− β) .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 177/366

For a point in the ball we have

f̂ (w)− (f̂ (e
n
)+ g(w)) = −

∑
j

ln
wj

1
n

(The increase in penalty when going from e
n to w).

This is at most β2

2(1−β) with β = nαr .

Hence,

f̂ (
e
n
)− f̂ (x̂) ≥ ln(1+α)− β2

(1− β) .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 177/366

For a point in the ball we have

f̂ (w)− (f̂ (e
n
)+ g(w)) = −

∑
j

ln
wj

1
n

(The increase in penalty when going from e
n to w).

This is at most β2

2(1−β) with β = nαr .

Hence,

f̂ (
e
n
)− f̂ (x̂) ≥ ln(1+α)− β2

(1− β) .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 177/366

Lemma 30
For |x| ≤ β < 1

| ln(1+ x)− x| ≤ x2

2(1− β) .

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 178/366

This gives for w ∈ B(en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣

=

∣∣∣∣∣∣∑j ln(
1/n+ (wj − 1/n)

1/n
)−

∑
j
n(wj −

1
n
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 179/366

This gives for w ∈ B(en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑j ln(

1/n+ (wj − 1/n)
1/n

)−
∑
j
n(wj −

1
n
)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 179/366

This gives for w ∈ B(en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑j ln(

1/n+ (wj − 1/n)
1/n

)−
∑
j
n(wj −

1
n
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 179/366

This gives for w ∈ B(en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑j ln(

1/n+ (wj − 1/n)
1/n

)−
∑
j
n(wj −

1
n
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 179/366

This gives for w ∈ B(en , ρ)∣∣∣∣∣∣∑j ln
wj
1/n

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑j ln(

1/n+ (wj − 1/n)
1/n

)−
∑
j
n(wj −

1
n
)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
j

ln(1+
≤nαr<1︷ ︸︸ ︷

n(wj − 1/n))−n(wj −
1
n
)


∣∣∣∣∣∣∣

≤
∑
j

n2(wj − 1/n)2

2(1−αnr)

≤ (αnr)2

2(1−αnr)

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 179/366

The decrease in potential is therefore at least

ln(1+α)− β2

1− β

with β = nαr = α
√

n
n−1 .

It can be shown that this is at least 1
10 for n ≥ 4 and α = 1/4.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 180/366

The decrease in potential is therefore at least

ln(1+α)− β2

1− β

with β = nαr = α
√

n
n−1 .

It can be shown that this is at least 1
10 for n ≥ 4 and α = 1/4.

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 180/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

Let x̄(k) be the current point after the k-th iteration, and let

x̄(0) = e
n .

Then f(x̄(k)) ≤ f(e/n)− k/10.

This gives

n ln
ctx̄(k)

ct en
≤
∑
j

ln x̄(k)j −
∑
j

ln
1
n
− k/10

≤ n lnn− k/10

Choosing k = 10n(` + lnn) with ` = Θ(L) we get

ctx̄(k)

ct en
≤ e−` ≤ 2−` .

Hence, Θ(nL) iterations are sufficient. One iteration can be

performed in time O(n3).

EADS II 8 Karmarkar’s Algorithm

c©Harald Räcke 181/366

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 9 Introduction

c©Harald Räcke 182/366

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 9 Introduction

c©Harald Räcke 182/366

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 9 Introduction

c©Harald Räcke 182/366

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 9 Introduction

c©Harald Räcke 182/366

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

EADS II 9 Introduction

c©Harald Räcke 182/366

Definition 31
An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.

EADS II 9 Introduction

c©Harald Räcke 183/366

Minimization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let cost(F) denote the cost of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote the

feasible solution computed by A. Then A is an approximation

algorithm with approximation guarantee α ≥ 1 if

∀I ∈ I : cost(A(I)) ≤ α · min
F∈F(I)

{cost(F)} = α ·OPT(I)

EADS II 9 Introduction

c©Harald Räcke 184/366

Maximization Problem:

Let I denote the set of problem instances, and let for a given

instance I ∈ I, F(I) denote the set of feasible solutions. Further

let profit(F) denote the profit of a feasible solution F ∈ F .

Let for an algorithm A and instance I ∈ I, A(I) ∈ F(I) denote the

feasible solution computed by A. Then A is an approximation

algorithm with approximation guarantee α ≤ 1 if

∀I ∈ I : cost(A(I)) ≥ α · max
F∈F(I)

{profit(F)} = α ·OPT(I)

EADS II 9 Introduction

c©Harald Räcke 185/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

EADS II 9 Introduction

c©Harald Räcke 186/366

What can we hope for?

Definition 32
A polynomial-time approximation scheme (PTAS) is a family of

algorithms {Aε}, such that Aε is a (1+ ε)-approximation

algorithms (for minimization problems) or a

(1− ε)-approximation algorithms (for maximization problems).

Many NP-complete problems have polynomial time approximation

schemes.

EADS II 9 Introduction

c©Harald Räcke 187/366

What can we hope for?

Definition 32
A polynomial-time approximation scheme (PTAS) is a family of

algorithms {Aε}, such that Aε is a (1+ ε)-approximation

algorithms (for minimization problems) or a

(1− ε)-approximation algorithms (for maximization problems).

Many NP-complete problems have polynomial time approximation

schemes.

EADS II 9 Introduction

c©Harald Räcke 187/366

What can we hope for?

Definition 32
A polynomial-time approximation scheme (PTAS) is a family of

algorithms {Aε}, such that Aε is a (1+ ε)-approximation

algorithms (for minimization problems) or a

(1− ε)-approximation algorithms (for maximization problems).

Many NP-complete problems have polynomial time approximation

schemes.

EADS II 9 Introduction

c©Harald Räcke 187/366

There are difficult problems!

The class MAX SNP (which we do not define) contains optimization

problems like maximum cut or maximum satisfiability.

Theorem 33
For any MAX SNP-hard problem, there does not exist a

polynomial-time approximation scheme, unless P = NP.

EADS II 9 Introduction

c©Harald Räcke 188/366

There are difficult problems!

The class MAX SNP (which we do not define) contains optimization

problems like maximum cut or maximum satisfiability.

Theorem 33
For any MAX SNP-hard problem, there does not exist a

polynomial-time approximation scheme, unless P = NP.

EADS II 9 Introduction

c©Harald Räcke 188/366

There are difficult problems!

The class MAX SNP (which we do not define) contains optimization

problems like maximum cut or maximum satisfiability.

Theorem 33
For any MAX SNP-hard problem, there does not exist a

polynomial-time approximation scheme, unless P = NP.

EADS II 9 Introduction

c©Harald Räcke 188/366

There are really difficult problems!

Theorem 34
For any constant ε > 0 there does not exist an

Ω(nε−1)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that a 1/n-approximation is trivial.

EADS II 9 Introduction

c©Harald Räcke 189/366

There are really difficult problems!

Theorem 34
For any constant ε > 0 there does not exist an

Ω(nε−1)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that a 1/n-approximation is trivial.

EADS II 9 Introduction

c©Harald Räcke 189/366

There are really difficult problems!

Theorem 34
For any constant ε > 0 there does not exist an

Ω(nε−1)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that a 1/n-approximation is trivial.

EADS II 9 Introduction

c©Harald Räcke 189/366

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a vital

role in the design of many approximation algorithms.

EADS II 10 Integer Programs

c©Harald Räcke 190/366

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a vital

role in the design of many approximation algorithms.

EADS II 10 Integer Programs

c©Harald Räcke 190/366

Definition 35
An Integer Linear Program or Integer Program is a Linear Program

in which all variables are required to be integral.

Definition 36
A Mixed Integer Program is a Linear Program in which a subset of

the variables are required to be integral.

EADS II 10 Integer Programs

c©Harald Räcke 191/366

Definition 35
An Integer Linear Program or Integer Program is a Linear Program

in which all variables are required to be integral.

Definition 36
A Mixed Integer Program is a Linear Program in which a subset of

the variables are required to be integral.

EADS II 10 Integer Programs

c©Harald Räcke 191/366

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

EADS II 10 Integer Programs

c©Harald Räcke 192/366

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

EADS II 10 Integer Programs

c©Harald Räcke 192/366

Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑
i∈I
wi is minimized.

EADS II 10 Integer Programs

c©Harald Räcke 193/366

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral

EADS II 10 Integer Programs

c©Harald Räcke 194/366

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 195/366

Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.

EADS II 10 Integer Programs

c©Harald Räcke 196/366

IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 197/366

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max
∑
e∈E xe

s.t. ∀v ∈ V
∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 198/366

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max
∑
e∈E xe

s.t. ∀v ∈ V
∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 198/366

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 199/366

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 199/366

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight wi
and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 200/366

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight wi
and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 10 Integer Programs

c©Harald Räcke 200/366

Facility Location

Given a set L of (possible) locations for placing facilities and a set

C of customers together with cost functions s : C × L→ R+ and

o : L→ R+ find a set of facility locations F together with an

assignment φ : C → F of customers to open facilities such that∑
f∈F

o(f)+
∑
c
s(c,φ(c))

is minimized.

In the metric facility location problem we have

s(c, f) ≤ s(c, f ′)+ s(c′, f)+ s(c′, f ′) .

EADS II 10 Integer Programs

c©Harald Räcke 201/366

Relaxations

Definition 37
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective

values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi{0,1}.

EADS II 10 Integer Programs

c©Harald Räcke 202/366

Relaxations

Definition 37
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective

values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi{0,1}.

EADS II 10 Integer Programs

c©Harald Räcke 202/366

By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.

EADS II 10 Integer Programs

c©Harald Räcke 203/366

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 204/366

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 204/366

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 204/366

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 205/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 206/366

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 207/366

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi

≤
k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 207/366

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 207/366

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 207/366

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

EADS II 11.1 Deterministic Rounding

c©Harald Räcke 207/366

Technique 2: Rounding the Dual Solution.

The dual of the LP-relaxation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k}
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 11.2 Rounding the Dual

c©Harald Räcke 208/366

Technique 2: Rounding the Dual Solution.

The dual of the LP-relaxation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k}
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 11.2 Rounding the Dual

c©Harald Räcke 208/366

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu=wi

EADS II 11.2 Rounding the Dual

c©Harald Räcke 209/366

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 210/366

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 210/366

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 210/366

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 210/366

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 210/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi

=
∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi =

∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ f ·OPT

EADS II 11.2 Rounding the Dual

c©Harald Räcke 211/366

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

EADS II 11.2 Rounding the Dual

c©Harald Räcke 212/366

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains all sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 11.3 Primal Dual Technique

c©Harald Räcke 213/366

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains all sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 11.3 Primal Dual Technique

c©Harald Räcke 213/366

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains all sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 11.3 Primal Dual Technique

c©Harald Räcke 213/366

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains all sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

EADS II 11.3 Primal Dual Technique

c©Harald Räcke 213/366

Technique 3: The Primal Dual Method

Algorithm 4 PrimalDual
1: y ← 0

2: I ← �
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yi until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}

EADS II 11.3 Primal Dual Technique

c©Harald Räcke 214/366

Technique 4: The Greedy Algorithm

Algorithm 5 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

EADS II 11.4 Greedy

c©Harald Räcke 215/366

Technique 4: The Greedy Algorithm

Lemma 40
Given positive numbers a1, . . . , ak and b1, . . . , bk then

min
i

ai
bi
≤
∑
i ai∑
i bi

≤max
i

ai
bi

EADS II 11.4 Greedy

c©Harald Räcke 216/366

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤ OPT
n`

.

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 11.4 Greedy

c©Harald Räcke 217/366

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤ OPT
n`

.

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 11.4 Greedy

c©Harald Räcke 217/366

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤ OPT
n`

.

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

EADS II 11.4 Greedy

c©Harald Räcke 217/366

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

EADS II 11.4 Greedy

c©Harald Räcke 218/366

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

EADS II 11.4 Greedy

c©Harald Räcke 218/366

Technique 4: The Greedy Algorithm

∑
j∈I
wj

≤
s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ lnn+ 1 .

EADS II 11.4 Greedy

c©Harald Räcke 219/366

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ lnn+ 1 .

EADS II 11.4 Greedy

c©Harald Räcke 219/366

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ lnn+ 1 .

EADS II 11.4 Greedy

c©Harald Räcke 219/366

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ lnn+ 1 .

EADS II 11.4 Greedy

c©Harald Räcke 219/366

Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ lnn+ 1 .

EADS II 11.4 Greedy

c©Harald Räcke 219/366

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 220/366

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 220/366

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 220/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj)

≤
∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj

≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 221/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds]

≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 41
With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 222/366

Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .

EADS II 11.5 Randomized Rounding

c©Harald Räcke 223/366

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 224/366

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost]

≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 224/366

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α

= O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 224/366

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 224/366

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take all sets.

E[cost] ≤ (α+1) lnn·cost(LP)+(
∑
j
wj)n−α = O(lnn)·OPT

If the weights are polynomially bounded (smallest weight is

1), sufficiently large α and OPT at least 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 224/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[sucess]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[sucess]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[sucess]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

EADS II 11.5 Randomized Rounding

c©Harald Räcke 225/366

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 42
There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

EADS II 11.5 Randomized Rounding

c©Harald Räcke 226/366

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 42
There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

EADS II 11.5 Randomized Rounding

c©Harald Räcke 226/366

Techniques:

ñ Deterministic Rounding

ñ Rounding of the Dual

ñ Primal Dual

ñ Greedy

ñ Randomized Rounding

ñ Local Search

ñ Rounding the Data + Dynamic Programming

EADS II 11.5 Randomized Rounding

c©Harald Räcke 227/366

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L

s.t. ∀machines i
∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 228/366

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L

s.t. ∀machines i
∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 228/366

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 229/366

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 229/366

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 229/366

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

max
j
pj

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 230/366

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

max
j
pj

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 230/366

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 231/366

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 231/366

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 231/366

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 231/366

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move perform that

reduces the makespan perform the switch.

REPEAT

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 232/366

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move perform that

reduces the makespan perform the switch.

REPEAT

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 232/366

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move perform that

reduces the makespan perform the switch.

REPEAT

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 232/366

Local Search Analysis

Let ` be the job that finishes last in the produces schedule.

Let S` its start time, and let C` its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 233/366

Local Search Analysis

Let ` be the job that finishes last in the produces schedule.

Let S` its start time, and let C` its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 233/366

Local Search Analysis

Let ` be the job that finishes last in the produces schedule.

Let S` its start time, and let C` its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 233/366

Local Search Analysis

Let ` be the job that finishes last in the produces schedule.

Let S` its start time, and let C` its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 233/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all jobs are busy, and, hence, the

total work performed in this interval is

m · S` ≤
∑
j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑
j≠`

pj = (1−
1
m
)p` +

1
m

∑
j
pj ≤ (2−

1
m
)C∗max

EADS II 12 Scheduling on Identical Machines: Local Search

c©Harald Räcke 234/366

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 235/366

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 235/366

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 235/366

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 235/366

A Greedy Strategy

Lemma 43
If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 236/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n. (Otw. deleting this job gives

another counter-example with fewer jobs)

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + p` ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time > C∗max.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

EADS II 13 Scheduling on Identical Machines: Greedy

c©Harald Räcke 237/366

Traveling Salesman

Given a set of cities ({1, . . . , n}) and a symmetric matrix C = (cij),
cij ≥ 0 that specifies for every pair (i, j) ∈ [n]× [n] the cost for

travelling from city i to city j. Find a permutation π of the cities

such that the round-trip cost

cπ(1)π(n) +
n−1∑
i=1

cπ(i)π(i+1)

is minimized.

EADS II 14 TSP

c©Harald Räcke 238/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Traveling Salesman

Theorem 44
There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than 2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

EADS II 14 TSP

c©Harald Räcke 239/366

Metric Traveling Salesman

In the metric version we assume for every triple i, j, k ∈ {1, . . . , n}

cij ≤ cij + cjk .

It is convenient to view the input as a complete undirected graph

G = (V , E), where cij for an edge (i, j) defines the distance

between nodes i and j.

EADS II 14 TSP

c©Harald Räcke 240/366

Metric Traveling Salesman

In the metric version we assume for every triple i, j, k ∈ {1, . . . , n}

cij ≤ cij + cjk .

It is convenient to view the input as a complete undirected graph

G = (V , E), where cij for an edge (i, j) defines the distance

between nodes i and j.

EADS II 14 TSP

c©Harald Räcke 240/366

TSP: Lower Bound I

Lemma 45
The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 14 TSP

c©Harald Räcke 241/366

TSP: Lower Bound I

Lemma 45
The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 14 TSP

c©Harald Räcke 241/366

TSP: Lower Bound I

Lemma 45
The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 14 TSP

c©Harald Räcke 241/366

TSP: Lower Bound I

Lemma 45
The cost OPTTSP(G) of an optimum traveling salesman tour is at

least as large as the weight OPTMST(G) of a minimum spanning

tree in G.

Proof:

ñ Take the optimum TSP-tour.

ñ Delete one edge.

ñ This gives a spanning tree of cost at most OPTTSP(G).

EADS II 14 TSP

c©Harald Räcke 241/366

TSP: Greedy Algorithm

ñ Start with a tour on a subset S containing a single node.

ñ Take the node v closest to S. Add it S and expand the

existing tour on S to include v.

ñ Repeat until all nodes have been processed.

EADS II 14 TSP

c©Harald Räcke 242/366

TSP: Greedy Algorithm

ñ Start with a tour on a subset S containing a single node.

ñ Take the node v closest to S. Add it S and expand the

existing tour on S to include v.

ñ Repeat until all nodes have been processed.

EADS II 14 TSP

c©Harald Räcke 242/366

TSP: Greedy Algorithm

ñ Start with a tour on a subset S containing a single node.

ñ Take the node v closest to S. Add it S and expand the

existing tour on S to include v.

ñ Repeat until all nodes have been processed.

EADS II 14 TSP

c©Harald Räcke 242/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let Si be the set at the start of the i-th iteration, and let vi denote

the node added during the iteration.

Further let si ∈ Si be the node closest to vi ∈ Si.

Let ri denote the successor of si in the tour before inserting vi.

We replace the edge (si, ri) in the tour by the two edges (si, vi)
and (vi, ri).

This increases the cost by

csi,vi + cvi,ri − csi,ri ≤ 2csi,vi

EADS II 14 TSP

c©Harald Räcke 243/366

TSP: Greedy Algorithm

The edges (si, vi) considered during the Greedy algorithm are

exactly the edges considered during PRIMs MST algorithm.

Hence, ∑
i
csi,vi = OPTMST(G)

which with the previous lower bound gives a 2-approximation.

EADS II 14 TSP

c©Harald Räcke 244/366

TSP: Greedy Algorithm

The edges (si, vi) considered during the Greedy algorithm are

exactly the edges considered during PRIMs MST algorithm.

Hence, ∑
i
csi,vi = OPTMST(G)

which with the previous lower bound gives a 2-approximation.

EADS II 14 TSP

c©Harald Räcke 244/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Suppose that we are given an Eulerian graph G′ = (V , E′, c′) of

G = (V , E, c) such that for any edge (i, j) ∈ E′ c′(i, j) ≥ c(i, j).

Then we can find a TSP-tour of cost at most∑
e∈E′

c′(e)

ñ Find an Euler tour of G′.
ñ Fix a permutation of the cities (i.e., a TSP-tour) by traversing

the Euler tour and only note the first occurrence of a city.

ñ The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II 14 TSP

c©Harald Räcke 245/366

TSP: A different approach

Consider the following graph:

ñ Compute an MST of G.

ñ Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most

2 ·OPTMST(G).

Hence, short-cutting gives a tour of cost no more than

2 ·OPTMST(G) which means we have a 2-approximation.

EADS II 14 TSP

c©Harald Räcke 246/366

TSP: A different approach

Consider the following graph:

ñ Compute an MST of G.

ñ Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most

2 ·OPTMST(G).

Hence, short-cutting gives a tour of cost no more than

2 ·OPTMST(G) which means we have a 2-approximation.

EADS II 14 TSP

c©Harald Räcke 246/366

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Matching between odd degree

vertices in the MST (note that there are an even number of them).

EADS II 14 TSP

c©Harald Räcke 247/366

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Matching between odd degree

vertices in the MST (note that there are an even number of them).

EADS II 14 TSP

c©Harald Räcke 247/366

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Matching between odd degree

vertices in the MST (note that there are an even number of them).

EADS II 14 TSP

c©Harald Räcke 247/366

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Matching between odd degree

vertices in the MST (note that there are an even number of them).

EADS II 14 TSP

c©Harald Räcke 247/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

OPTTSP(G).

However, the edges of this tour give rise to two disjoint matchings.

One of these matchings must have weight less than OPTTSP(G)/2.

Adding this matching to the MST gives an Eulerian graph with

edge weight at most

OPTMST(G)+OPTTSP(G)/2 ≤
3
2

OPTTSP(G) ,

Short cutting gives a 3
2 -approximation for metric TSP.

This is the best that is known.

EADS II 14 TSP

c©Harald Räcke 248/366

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a subset

I ⊆ {1, . . . , n} of items of total weight at most W such that the

profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 15.1 Knapsack

c©Harald Räcke 249/366

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a subset

I ⊆ {1, . . . , n} of items of total weight at most W such that the

profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

EADS II 15.1 Knapsack

c©Harald Räcke 249/366

15 Rounding Data + Dynamic Programming

Algorithm 6 Knapsack

1: A1 ← [(0,0), (p1,w1)]
2: for j ← 2 to n do

3: A(j)← A(j − 1)
4: for each (p,w) ∈ A(j − 1) do

5: if w +wj ≤ W then

6: add (p + pj ,w +wj) to A(j)
7: remove dominated pairs from A(j)
8: return max(p,w)∈A(n) p

The running time is O(n ·min{W,P}), where P =
∑
i pi is the

total profit of all items. This is only pseudo-polynomial.

EADS II 15.1 Knapsack

c©Harald Räcke 250/366

15 Rounding Data + Dynamic Programming

Definition 47
An algorithm is said to have pseudo-polynomial running time if

the running time is polynomial when the numerical part of the

input is encoded in unary.

EADS II 15.1 Knapsack

c©Harald Räcke 251/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.

ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′)

= O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i)

= O(n
∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c)

≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O(n
∑
i
p′i) = O(n

∑
i
b pi
εM/n

c) ≤ O(n
3

ε
) .

EADS II 15.1 Knapsack

c©Harald Räcke 252/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S

≥ µ
∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
≥ µ

∑
i∈S
p′i

≥ µ
∑
i∈O
p′i

≥
∑
i∈O
pi − |O|µ

≥
∑
i∈O
pi −nµ

=
∑
i∈O
pi − εM

≥ (1− ε)OPT .

EADS II 15.1 Knapsack

c©Harald Räcke 253/366

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 254/366

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 254/366

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤
1
km

∑
i
pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 255/366

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤
1
km

∑
i
pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 255/366

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤
1
km

∑
i
pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 255/366

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤
1
km

∑
i
pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 255/366

We still have the inequality

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j
pj/(mk)

which is at most C∗max/k.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 256/366

We still have the inequality

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j
pj/(mk)

which is at most C∗max/k.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 256/366

We still have the inequality

1
m

∑
j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j
pj/(mk)

which is at most C∗max/k.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 256/366

Hence we get a schedule of length at most

(1+ 1
k
)C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 48
The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 257/366

Hence we get a schedule of length at most

(1+ 1
k
)C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 48
The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 257/366

Hence we get a schedule of length at most

(1+ 1
k
)C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 48
The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 257/366

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 258/366

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 258/366

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 258/366

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 258/366

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 259/366

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 259/366

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 259/366

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 259/366

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(1+ 1
k
)T .

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 260/366

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(1+ 1
k
)T .

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 260/366

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(1+ 1
k
)T .

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 260/366

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the

new load is at most

T + T
k
≤ (1+ 1

k
)T .

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 261/366

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the

new load is at most

T + T
k
≤ (1+ 1

k
)T .

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 261/366

Running Time: There should not be a job with rounded size

more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different

configurations.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 262/366

Running Time: There should not be a job with rounded size

more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different

configurations.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 262/366

Running Time: There should not be a job with rounded size

more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different

configurations.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 262/366

Running Time: There should not be a job with rounded size

more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different

configurations.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 262/366

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

 1+ min
(s1,...,sk2)∈C

OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) 6≤ 0

0 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 = (nk)k2
.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 263/366

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

 1+ min
(s1,...,sk2)∈C

OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) 6≤ 0

0 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 = (nk)k2
.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 263/366

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=

 1+ min
(s1,...,sk2)∈C

OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) 6≤ 0

0 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 = (nk)k2
.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 263/366

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Theorem 49
There is no FPTAS for problems that are strongly NP-hard.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 264/366

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Theorem 49
There is no FPTAS for problems that are strongly NP-hard.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 264/366

Last Time

Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=


0 (n1, . . . , nA) = 0

1+ min
(s1,...,sA)∈C

OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) ≥ 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on

the same machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 265/366

Last Time

Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=


0 (n1, . . . , nA) = 0

1+ min
(s1,...,sA)∈C

OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) ≥ 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on

the same machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 265/366

Last Time

Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=


0 (n1, . . . , nA) = 0

1+ min
(s1,...,sA)∈C

OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) ≥ 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on

the same machine.

EADS II 15.2 Scheduling Revisited

c©Harald Räcke 265/366

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 50
There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

EADS II 15.3 Bin Packing

c©Harald Räcke 266/366

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 50
There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

EADS II 15.3 Bin Packing

c©Harald Räcke 266/366

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 15.3 Bin Packing

c©Harald Räcke 267/366

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 15.3 Bin Packing

c©Harald Räcke 267/366

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 15.3 Bin Packing

c©Harald Räcke 267/366

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 15.3 Bin Packing

c©Harald Räcke 267/366

Bin Packing

Definition 51
An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for set cover or for knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

EADS II 15.3 Bin Packing

c©Harald Räcke 268/366

Bin Packing

Definition 51
An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for set cover or for knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

EADS II 15.3 Bin Packing

c©Harald Räcke 268/366

Bin Packing

Definition 51
An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for set cover or for knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

EADS II 15.3 Bin Packing

c©Harald Räcke 268/366

Bin Packing

Again we can differentiate between small and large items.

Lemma 52
Any packing of items of size at most γ into ` bins can be extended

to a packing of all items into max{`, 1
1−γ SIZE(I)+ 1} bins, where

SIZE(I) =
∑
i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 15.3 Bin Packing

c©Harald Räcke 269/366

Bin Packing

Again we can differentiate between small and large items.

Lemma 52
Any packing of items of size at most γ into ` bins can be extended

to a packing of all items into max{`, 1
1−γ SIZE(I)+ 1} bins, where

SIZE(I) =
∑
i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 15.3 Bin Packing

c©Harald Räcke 269/366

Bin Packing

Again we can differentiate between small and large items.

Lemma 52
Any packing of items of size at most γ into ` bins can be extended

to a packing of all items into max{`, 1
1−γ SIZE(I)+ 1} bins, where

SIZE(I) =
∑
i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 15.3 Bin Packing

c©Harald Räcke 269/366

Bin Packing

Again we can differentiate between small and large items.

Lemma 52
Any packing of items of size at most γ into ` bins can be extended

to a packing of all items into max{`, 1
1−γ SIZE(I)+ 1} bins, where

SIZE(I) =
∑
i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 15.3 Bin Packing

c©Harald Räcke 269/366

Choose γ = ε/2. Then we either use ` bins or at most

1/(1− ε/2)OPT+ 1 ≤ (1+ ε)OPT+ 1

bins.

It remains to find an algorithm for the large items.

EADS II 15.3 Bin Packing

c©Harald Räcke 270/366

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 15.3 Bin Packing

c©Harald Räcke 271/366

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 15.3 Bin Packing

c©Harald Räcke 271/366

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 15.3 Bin Packing

c©Harald Räcke 271/366

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 15.3 Bin Packing

c©Harald Räcke 271/366

Lemma 53
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 272/366

Lemma 53
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 272/366

Lemma 53
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 272/366

Lemma 53
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 272/366

Lemma 53
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 272/366

Lemma 54
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

itemsfor group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 273/366

Lemma 54
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

itemsfor group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 273/366

Lemma 54
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

itemsfor group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 273/366

Lemma 54
OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

itemsfor group 2 have been packed;

ñ . . .

EADS II 15.3 Bin Packing

c©Harald Räcke 273/366

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/(εSIZE(I)) ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach. This gives a

(1+ ε)-approximation because of the choice of k.

EADS II 15.3 Bin Packing

c©Harald Räcke 274/366

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/(εSIZE(I)) ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach. This gives a

(1+ ε)-approximation because of the choice of k.

EADS II 15.3 Bin Packing

c©Harald Räcke 274/366

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/(εSIZE(I)) ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach. This gives a

(1+ ε)-approximation because of the choice of k.

EADS II 15.3 Bin Packing

c©Harald Räcke 274/366

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/(εSIZE(I)) ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach. This gives a

(1+ ε)-approximation because of the choice of k.

EADS II 15.3 Bin Packing

c©Harald Räcke 274/366

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ 2n/(εSIZE(I)) ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach. This gives a

(1+ ε)-approximation because of the choice of k.

EADS II 15.3 Bin Packing

c©Harald Räcke 274/366

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 275/366

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 275/366

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 275/366

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 276/366

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 276/366

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 276/366

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 276/366

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 276/366

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 277/366

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 277/366

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

EADS II 16 Advanced Rounding for Bin Packing

c©Harald Räcke 277/366

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m}
∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

EADS II 16.1 Configuration LP

c©Harald Räcke 278/366

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m}
∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

EADS II 16.1 Configuration LP

c©Harald Räcke 278/366

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m}
∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

EADS II 16.1 Configuration LP

c©Harald Räcke 278/366

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m}
∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

EADS II 16.1 Configuration LP

c©Harald Räcke 278/366

How to solve this LP?

later...

EADS II 16.1 Configuration LP

c©Harald Räcke 279/366

We can assume that each item has size at least 1/SIZE(I).

EADS II 16.1 Configuration LP

c©Harald Räcke 280/366

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

EADS II 16.1 Configuration LP

c©Harald Räcke 281/366

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

EADS II 16.1 Configuration LP

c©Harald Räcke 281/366

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

EADS II 16.1 Configuration LP

c©Harald Räcke 281/366

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

EADS II 16.1 Configuration LP

c©Harald Räcke 281/366

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

EADS II 16.1 Configuration LP

c©Harald Räcke 282/366

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

EADS II 16.1 Configuration LP

c©Harald Räcke 282/366

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

EADS II 16.1 Configuration LP

c©Harald Räcke 282/366

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

EADS II 16.1 Configuration LP

c©Harald Räcke 282/366

Lemma 55
The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

EADS II 16.1 Configuration LP

c©Harald Räcke 283/366

Lemma 55
The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

EADS II 16.1 Configuration LP

c©Harald Räcke 283/366

Lemma 55
The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

EADS II 16.1 Configuration LP

c©Harald Räcke 283/366

Lemma 55
The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

EADS II 16.1 Configuration LP

c©Harald Räcke 283/366

Lemma 56
The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

EADS II 16.1 Configuration LP

c©Harald Räcke 284/366

Lemma 56
The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

EADS II 16.1 Configuration LP

c©Harald Räcke 284/366

Lemma 56
The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

EADS II 16.1 Configuration LP

c©Harald Räcke 284/366

Lemma 56
The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

EADS II 16.1 Configuration LP

c©Harald Räcke 284/366

Lemma 56
The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.
ñ Consider a group Gi that has strictly more items than Gi−1.
ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the smallest piece has size at most 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most
nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

EADS II 16.1 Configuration LP

c©Harald Räcke 284/366

Algorithm 7 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I′; pack

discarded items in at most O(log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack bxjc bins in configuration Tj for all j; call the

packed instance I1.

6: Let I2 be remaining pieces from I′

7: Pack I2 via BinPack(I2)

EADS II 16.1 Configuration LP

c©Harald Räcke 285/366

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

EADS II 16.1 Configuration LP

c©Harald Räcke 286/366

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

EADS II 16.1 Configuration LP

c©Harald Räcke 286/366

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

EADS II 16.1 Configuration LP

c©Harald Räcke 286/366

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

EADS II 16.1 Configuration LP

c©Harald Räcke 286/366

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 16.1 Configuration LP

c©Harald Räcke 287/366

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 16.1 Configuration LP

c©Harald Räcke 287/366

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 16.1 Configuration LP

c©Harald Räcke 287/366

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 16.1 Configuration LP

c©Harald Räcke 287/366

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

EADS II 16.1 Configuration LP

c©Harald Räcke 287/366

Analysis

We can show that size(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

EADS II 16.1 Configuration LP

c©Harald Räcke 288/366

Analysis

We can show that size(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

EADS II 16.1 Configuration LP

c©Harald Räcke 288/366

Analysis

We can show that size(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

EADS II 16.1 Configuration LP

c©Harald Räcke 288/366

17 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

EADS II 17 MAXSAT

c©Harald Räcke 289/366

17 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

EADS II 17 MAXSAT

c©Harald Räcke 289/366

17 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

EADS II 17 MAXSAT

c©Harald Räcke 289/366

17 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

EADS II 17 MAXSAT

c©Harald Räcke 289/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

17 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

EADS II 17 MAXSAT

c©Harald Räcke 290/366

MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).

EADS II 17 MAXSAT

c©Harald Räcke 291/366

Define random variable Xj with

Xj =

 1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj

EADS II 17 MAXSAT

c©Harald Räcke 292/366

Define random variable Xj with

Xj =

 1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj

EADS II 17 MAXSAT

c©Harald Räcke 292/366

E[W]

=
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

E[W] =
∑
j
wjE[Xj]

=
∑
j
wjPr[Cj is satisified]

=
∑
j
wj(1− (

1
2
)`j)

≥ 1
2

∑
j
wj

≥ 1
2

OPT

EADS II 17 MAXSAT

c©Harald Räcke 293/366

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j
∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

EADS II 17 MAXSAT

c©Harald Räcke 294/366

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j
∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

EADS II 17 MAXSAT

c©Harald Räcke 294/366

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
j∈Pj

xi ∨
∨
j∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j
∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

EADS II 17 MAXSAT

c©Harald Räcke 294/366

MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and, hence,

to false with probability (1−yi)).

EADS II 17 MAXSAT

c©Harald Räcke 295/366

Lemma 57 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai

EADS II 17 MAXSAT

c©Harald Räcke 296/366

Lemma 58
Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then f(x) ≥ bx + a for x ∈ [0,1].

EADS II 17 MAXSAT

c©Harald Räcke 297/366

Pr[Cj not satisfied]

=
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.

EADS II 17 MAXSAT

c©Harald Räcke 298/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.

EADS II 17 MAXSAT

c©Harald Räcke 298/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.

EADS II 17 MAXSAT

c©Harald Räcke 298/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.

EADS II 17 MAXSAT

c©Harald Räcke 298/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1−yi)

∏
i∈Nj

yi

≤

 1
`j

 ∑
i∈Pj
(1−yi)+

∑
i∈Nj

yi



`j

=

1− 1
`j

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)



`j

≤
(

1−
zj
`j

)`j
.

EADS II 17 MAXSAT

c©Harald Räcke 298/366

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied]

≥ 1−
(

1−
zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

EADS II 17 MAXSAT

c©Harald Räcke 299/366

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1−
zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

EADS II 17 MAXSAT

c©Harald Räcke 299/366

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1−
zj
`j

)`j

≥
1−

(
1− 1

`j

)`j · zj .

EADS II 17 MAXSAT

c©Harald Räcke 299/366

E[W]

=
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

EADS II 17 MAXSAT

c©Harald Räcke 300/366

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

EADS II 17 MAXSAT

c©Harald Räcke 300/366

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j

≥
(

1− 1
e

)
OPT .

EADS II 17 MAXSAT

c©Harald Räcke 300/366

E[W] =
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
`j

)`j
≥
(

1− 1
e

)
OPT .

EADS II 17 MAXSAT

c©Harald Räcke 300/366

MAXSAT: The better of two

Theorem 59
Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.

EADS II 17 MAXSAT

c©Harald Räcke 301/366

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]

≥ E[1
2
W1 +

1
2
W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj(1− 2−`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1− 2−`j

)
︸ ︷︷ ︸

≥ 3
4



≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 302/366

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}] ≥ E[
1
2
W1 +

1
2
W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj(1− 2−`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1− 2−`j

)
︸ ︷︷ ︸

≥ 3
4



≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 302/366

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}] ≥ E[
1
2
W1 +

1
2
W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj(1− 2−`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1− 2−`j

)
︸ ︷︷ ︸

≥ 3
4



≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 302/366

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}] ≥ E[
1
2
W1 +

1
2
W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj(1− 2−`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1− 2−`j

)
︸ ︷︷ ︸

≥ 3
4



≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 302/366

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}] ≥ E[
1
2
W1 +

1
2
W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
`j

)`j+ 1
2

∑
j
wj(1− 2−`j)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
`j

)`j+ 1
2

(
1− 2−`j

)
︸ ︷︷ ︸

≥ 3
4



≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 302/366

randomized rounding

flipping coins

average

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

EADS II 17 MAXSAT

c©Harald Räcke 303/366

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

EADS II 17 MAXSAT

c©Harald Räcke 304/366

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

EADS II 17 MAXSAT

c©Harald Räcke 304/366

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 60
Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

EADS II 17 MAXSAT

c©Harald Räcke 305/366

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 60
Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

EADS II 17 MAXSAT

c©Harald Räcke 305/366

4x−1

1− 4−x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

EADS II 17 MAXSAT

c©Harald Räcke 306/366

Pr[Cj not satisfied]

=
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

yi

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

EADS II 17 MAXSAT

c©Harald Räcke 307/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

yi

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

EADS II 17 MAXSAT

c©Harald Räcke 307/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

yi

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

EADS II 17 MAXSAT

c©Harald Räcke 307/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

yi

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

EADS II 17 MAXSAT

c©Harald Räcke 307/366

Pr[Cj not satisfied] =
∏
i∈Pj
(1− f(yi))

∏
i∈Nj

yi

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(
∑
i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

EADS II 17 MAXSAT

c©Harald Räcke 307/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied]

≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj

≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W]

=
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied]

≥ 3
4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj

≥ 3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥

3
4

OPT

EADS II 17 MAXSAT

c©Harald Räcke 308/366

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

EADS II 17 MAXSAT

c©Harald Räcke 309/366

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

EADS II 17 MAXSAT

c©Harald Räcke 309/366

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

EADS II 17 MAXSAT

c©Harald Räcke 309/366

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

EADS II 17 MAXSAT

c©Harald Räcke 309/366

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

EADS II 17 MAXSAT

c©Harald Räcke 309/366

Lemma 62
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

EADS II 17 MAXSAT

c©Harald Räcke 310/366

Facility Location

Integer Program

min
∑
i∈F fiyi +

∑
i∈F

∑
j∈D cijxij

s.t. ∀j ∈ D
∑
i∈F xij = 1

∀i ∈ F, j ∈ D xij ≤ yi
∀i ∈ F, j ∈ D xij ∈ {0,1}

∀i ∈ F yi ∈ {0,1}

As usual we get an LP by relaxing the integrality constraints.

EADS II 18 Facility Location

c©Harald Räcke 311/366

Facility Location

Dual Linear Program

max
∑
j∈D vj

s.t. ∀i ∈ F
∑
j∈Dwij ≤ fi

∀i ∈ F, j ∈ D vj −wij ≤ cij
∀i ∈ F, j ∈ D wij ≥ 0

EADS II 18 Facility Location

c©Harald Räcke 312/366

Facility Location

Definition 63
Given an LP solution (x∗, y∗) we say that facility i neighbours

client j if xij > 0. Let N(j) = {i ∈ F : x∗ij > 0}.

EADS II 18 Facility Location

c©Harald Räcke 313/366

Lemma 64
If (x∗, y∗) is an optimal solution to the facility location LP and

(v∗,w∗) is an optimal dual solution, then x∗ij > 0 implies

cij < v∗j .

Follows from slackness conditions.

EADS II 18 Facility Location

c©Harald Räcke 314/366

Suppose we open set S ⊆ F of facilities s.t. for all clients we have

S ∩N(j) ≠ �.

Then every client j has a facility i s.t. assignment cost for this

client is at most cij ≤ v∗j .

Hence, the total assignment cost is∑
j
cijj ≤

∑
j
v∗j ≤ OPT ,

where ij is the facility that client j is assigned to.

EADS II 18 Facility Location

c©Harald Räcke 315/366

Suppose we open set S ⊆ F of facilities s.t. for all clients we have

S ∩N(j) ≠ �.

Then every client j has a facility i s.t. assignment cost for this

client is at most cij ≤ v∗j .

Hence, the total assignment cost is∑
j
cijj ≤

∑
j
v∗j ≤ OPT ,

where ij is the facility that client j is assigned to.

EADS II 18 Facility Location

c©Harald Räcke 315/366

Suppose we open set S ⊆ F of facilities s.t. for all clients we have

S ∩N(j) ≠ �.

Then every client j has a facility i s.t. assignment cost for this

client is at most cij ≤ v∗j .

Hence, the total assignment cost is∑
j
cijj ≤

∑
j
v∗j ≤ OPT ,

where ij is the facility that client j is assigned to.

EADS II 18 Facility Location

c©Harald Räcke 315/366

Problem: Facility cost may be huge!

Suppose we can partition a subset F ′ ⊆ F of facilities into

neighbour sets of some clients. I.e.

F ′ =
⊎
k
N(jk)

where j1, j2, . . . form a subset of the clients.

EADS II 18 Facility Location

c©Harald Räcke 316/366

Problem: Facility cost may be huge!

Suppose we can partition a subset F ′ ⊆ F of facilities into

neighbour sets of some clients. I.e.

F ′ =
⊎
k
N(jk)

where j1, j2, . . . form a subset of the clients.

EADS II 18 Facility Location

c©Harald Räcke 316/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik

= fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk

≤
∑

i∈N(jk)
fix∗ijk ≤

∑
i∈N(jk)

fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk

≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik

≤
∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i

=
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i

≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Now in each set N(jk) we open the cheapest facility. Call it fik .

We have

fik = fik
∑

i∈N(jk)
x∗ijk ≤

∑
i∈N(jk)

fix∗ijk ≤
∑

i∈N(jk)
fiy∗i .

Summing over all k gives

∑
k
fik ≤

∑
k

∑
i∈N(jk)

fiy∗i =
∑
i∈F ′

fiy∗i ≤
∑
i∈F
fiy∗i

Facility cost is at most the facility cost in an optimum solution.

EADS II 18 Facility Location

c©Harald Räcke 317/366

Problem: so far clients j1, j2, . . . have a neighboring facility.

What about the others?

Definition 65
Let N2(j) denote all neighboring clients of the neighboring

facilities of client j.

Note that N(j) is a set of facilities while N2(j) is a set of clients.

EADS II 18 Facility Location

c©Harald Räcke 318/366

Problem: so far clients j1, j2, . . . have a neighboring facility.

What about the others?

Definition 65
Let N2(j) denote all neighboring clients of the neighboring

facilities of client j.

Note that N(j) is a set of facilities while N2(j) is a set of clients.

EADS II 18 Facility Location

c©Harald Räcke 318/366

Problem: so far clients j1, j2, . . . have a neighboring facility.

What about the others?

Definition 65
Let N2(j) denote all neighboring clients of the neighboring

facilities of client j.

Note that N(j) is a set of facilities while N2(j) is a set of clients.

EADS II 18 Facility Location

c©Harald Räcke 318/366

Algorithm 8 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j
6: choose ik ∈ N(jk) as cheapest facility

7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)

EADS II 18 Facility Location

c©Harald Räcke 319/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci`

≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch`

≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗`

≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

Facility cost of this algorithm is at most OPT because the sets

N(jk) are disjoint.

Total assignment cost:

ñ Fix k; set j = jk and i = ik. We know that cij ≤ v∗j .

ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).

ci` ≤ cij + chj + ch` ≤ v∗j + v∗j + v∗` ≤ 3v∗`

Summing this over all facilities gives that the total assignment

cost is at most 3 ·OPT. Hence, we get a 4-approximation.

EADS II 18 Facility Location

c©Harald Räcke 320/366

In the above analysis we use the inequality∑
i∈F
fiy∗i ≤ OPT .

We know something stronger namely∑
i∈F
fiy∗i +

∑
i∈F

∑
j∈D

cijx∗ij ≤ OPT .

EADS II 18 Facility Location

c©Harald Räcke 321/366

In the above analysis we use the inequality∑
i∈F
fiy∗i ≤ OPT .

We know something stronger namely∑
i∈F
fiy∗i +

∑
i∈F

∑
j∈D

cijx∗ij ≤ OPT .

EADS II 18 Facility Location

c©Harald Räcke 321/366

Observation:

ñ Suppose when choosing a client jk, instead of opening the

cheapest facility in its neighborhood we choose a random

facility according to x∗ijk .
ñ Then we incur connection cost∑

i
cijkx

∗
ijk

for client jk. (In the previous algorithm we estimated this by

v∗jk).
ñ Define

C∗j =
∑
i
cijx∗ij

to be the connection cost for client j.

EADS II 18 Facility Location

c©Harald Räcke 322/366

Observation:

ñ Suppose when choosing a client jk, instead of opening the

cheapest facility in its neighborhood we choose a random

facility according to x∗ijk .
ñ Then we incur connection cost∑

i
cijkx

∗
ijk

for client jk. (In the previous algorithm we estimated this by

v∗jk).
ñ Define

C∗j =
∑
i
cijx∗ij

to be the connection cost for client j.

EADS II 18 Facility Location

c©Harald Räcke 322/366

Observation:

ñ Suppose when choosing a client jk, instead of opening the

cheapest facility in its neighborhood we choose a random

facility according to x∗ijk .
ñ Then we incur connection cost∑

i
cijkx

∗
ijk

for client jk. (In the previous algorithm we estimated this by

v∗jk).
ñ Define

C∗j =
∑
i
cijx∗ij

to be the connection cost for client j.

EADS II 18 Facility Location

c©Harald Räcke 322/366

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .

EADS II 18 Facility Location

c©Harald Räcke 323/366

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .

EADS II 18 Facility Location

c©Harald Räcke 323/366

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .

EADS II 18 Facility Location

c©Harald Räcke 323/366

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of

some jk). (recall that neighborhoods of different j′ks are disjoint).

We open facility i with probability xijk ≤ yi (in case it is in some

neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most∑
i∈F
fiyi .

EADS II 18 Facility Location

c©Harald Räcke 323/366

Algorithm 9 FacilityLocation
1: C ← D// unassigned clients

2: k← 0

3: while C ≠ 0 do

4: k← k+ 1

5: choose jk ∈ C that minimizes v∗j + C∗j
6: choose ik ∈ N(jk) according to probability xijk .
7: assign jk and all unassigned clients in N2(jk) to ik
8: C ← C − {jk} −N2(jk)

EADS II 18 Facility Location

c©Harald Räcke 324/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Total assignment cost:

ñ Fix k; set j = jk.
ñ Let ` ∈ N2(j) and h (one of) its neighbour(s) in N(j).
ñ If we assign a client ` to the same facility as i we pay at most∑

i
cijx∗ijk + chj + ch` ≤ C

∗
j + v∗j + v∗` ≤ C

∗
` + 2v∗`

Summing this over all clients gives that the total assignment cost

is at most ∑
j
C∗j +

∑
j

2v∗j ≤
∑
j
C∗j + 2OPT

Hence, it is at most 2OPT plus the total assignment cost in an

optimum solution.

Adding the facility cost gives a 3-approximation.

EADS II 18 Facility Location

c©Harald Räcke 325/366

Lemma 66 (Chernoff Bounds)

Let X1, . . . , Xn be n independent 0-1 random variables, not

necessarily identically distributed. Then for X =
∑n
i=1Xi and

µ = E[X], L ≤ µ ≤ U , and δ > 0

Pr[X ≥ (1+ δ)U] <
(

eδ

(1+ δ)1+δ

)U
,

and

Pr[X ≤ (1− δ)L] <
(

e−δ

(1− δ)1−δ

)L
,

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 326/366

Lemma 67
For 0 ≤ δ ≤ 1 we have that(

eδ

(1+ δ)1+δ

)U
≤ e−Uδ2/3

and (
e−δ

(1− δ)1−δ

)L
≤ e−Lδ2/2

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 327/366

Integer Multicommodity Flows

ñ Given si-ti pairs in a graph.

ñ Connect each pair by a paths such that not too many path

use any given edge.

min W

s.t. ∀i
∑
p∈Pi xp = 1∑
p:e∈p xp ≤ W

xp ∈ {0,1}

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 328/366

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set Pi at random according

to the probability distribution given by the Linear Programming

Solution.

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 329/366

Theorem 68
If W∗ ≥ c lnn for some constant c, then with probability at least

n−c/3 the total number of paths using any edge is at most

W∗ +
√
cW∗ lnn.

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 330/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Let Xie be a random variable that indicates whether the path for

si-ti uses edge e.

Then the number of paths using edge e is Ye =
∑
iXie.

E[Ye] =
∑
i

∑
p∈Pi:e∈p

x∗p =
∑
p:e∈P

x∗p ≤ W∗

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 331/366

Integer Multicommodity Flows

Choose δ =
√
(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W
∗δ2/3 = 1

nc/3

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 332/366

Integer Multicommodity Flows

Choose δ =
√
(c lnn)/W∗.

Then

Pr[Ye ≥ (1+ δ)W∗] < e−W
∗δ2/3 = 1

nc/3

EADS II 19.1 Chernoff Bounds

c©Harald Räcke 332/366

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k}
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 20 Primal Dual Revisited

c©Harald Räcke 333/366

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U
∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k}
∑
u:u∈Si yu ≤ wi

yu ≥ 0

EADS II 20 Primal Dual Revisited

c©Harald Räcke 333/366

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 334/366

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 334/366

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 334/366

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 334/366

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 334/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is

∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj

=
∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj =

∑
j

∑
e∈Sj

ye

=
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye

≤ f ·
∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

ñ Hence our cost is∑
j
wj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}|·ye ≤ f ·

∑
e
ye ≤ f ·OPT

EADS II 20 Primal Dual Revisited

c©Harald Räcke 335/366

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

EADS II 20 Primal Dual Revisited

c©Harald Räcke 336/366

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

EADS II 20 Primal Dual Revisited

c©Harald Räcke 336/366

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑
j:e∈Sj

xj = 1

then the solution would be optimal!!!

EADS II 20 Primal Dual Revisited

c©Harald Räcke 336/366

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an f -approximation.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 337/366

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an f -approximation.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 337/366

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑
j:e∈Sj

xj ≤ f

This is sufficient to show that the solution is an f -approximation.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 337/366

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i
∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j
∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥

1
α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 338/366

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i
∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j
∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥

1
α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 338/366

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxjcj

primal cost

right hand side of j-th
dual constraint

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj

= α
∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi

≤ αβ ·
∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Then

∑
j
cjxj ≤ α

∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi

∑
j
cjxj

cj

primal cost

∑
i
biyi

dual objective

EADS II 20 Primal Dual Revisited

c©Harald Räcke 339/366

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 340/366

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 340/366

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 341/366

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 341/366

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 341/366

Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈C yC

s.t. ∀v ∈ V
∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

EADS II 20 Primal Dual Revisited

c©Harald Räcke 342/366

Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈C yC

s.t. ∀v ∈ V
∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

EADS II 20 Primal Dual Revisited

c©Harald Räcke 342/366

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 343/366

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 343/366

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 343/366

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase ye until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 343/366

Then ∑
v
wvxv

=
∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Then ∑
v
wvxv =

∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 344/366

Algorithm 10 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G

EADS II 20 Primal Dual Revisited

c©Harald Räcke 345/366

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .

EADS II 20 Primal Dual Revisited

c©Harald Räcke 346/366

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .

EADS II 20 Primal Dual Revisited

c©Harald Räcke 346/366

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get an α-approximation.

Theorem 69
In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

EADS II 20 Primal Dual Revisited

c©Harald Räcke 347/366

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get an α-approximation.

Theorem 69
In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

EADS II 20 Primal Dual Revisited

c©Harald Räcke 347/366

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S
∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 348/366

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S
∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 348/366

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 349/366

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 349/366

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 350/366

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 350/366

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 350/366

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 350/366

Algorithm 11 PrimalDualShortestPath
1: y ← 0

2: F ← �
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P

EADS II 20 Primal Dual Revisited

c©Harald Räcke 351/366

Lemma 70
At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 352/366

Lemma 70
At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 352/366

Lemma 70
At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 352/366

∑
e∈P
c(e)

=
∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

∑
e∈P
c(e) =

∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P
c(e) =

∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 353/366

If S contains two edges from P then there must exist a subpath P ′

of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 354/366

If S contains two edges from P then there must exist a subpath P ′

of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 354/366

If S contains two edges from P then there must exist a subpath P ′

of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 354/366

If S contains two edges from P then there must exist a subpath P ′

of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 354/366

If S contains two edges from P then there must exist a subpath P ′

of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 354/366

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs

si, ti,i = 1, . . . , k, and a cost function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k}
there is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 355/366

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs

si, ti,i = 1, . . . , k, and a cost function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k}
there is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 355/366

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs

si, ti,i = 1, . . . , k, and a cost function c : E → R+ on the edges.

Find a subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k}
there is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 355/366

max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that we

have many more variables (sets for which we can generate a moat

of non-zero width).

EADS II 20 Primal Dual Revisited

c©Harald Räcke 356/366

Algorithm 12 FirstTry
1: y ← 0

2: F ← �
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F) such

that |C ∩ {si, ti}| = 1 for some i.
5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑

S∈Si:e′∈δ(S)yS = ce′
6: F ← F ∪ {e′}
7: Let Pi be an si-ti path in (V , F)
8: return

⋃
i Pi

EADS II 20 Primal Dual Revisited

c©Harald Räcke 357/366

∑
e∈F
c(e)

=
∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS

=
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.

ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.

ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.

ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

∑
e∈F
c(e) =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 358/366

Algorithm 13 SecondTry

1: y ← 0; F ← �; ` ← 0

2: while not all si-ti pairs connected in F do

3: ` ← ` + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

e` ∈ δ(C′), C′ ∈ C s.t.
∑
S:e`∈δ(S)yS = ce`

6: F ← F ∪ {e`}
7: F ′ ← F
8: for k← ` downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′

EADS II 20 Primal Dual Revisited

c©Harald Räcke 359/366

The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges in

any order.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 360/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Example

s1 s2

s3

t1

t2

t3

EADS II 20 Primal Dual Revisited

c©Harald Räcke 361/366

Lemma 71
For any C in any iteration of the algorithm∑

C∈C
|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed in

the final solution is at most twice the number of moats.

Proof: later...

EADS II 20 Primal Dual Revisited

c©Harald Räcke 362/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 363/366

Lemma 72
For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 364/366

Lemma 72
For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 364/366

Lemma 72
For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 364/366

Lemma 72
For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 364/366

Lemma 72
For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. ei is the set we add to F . Let Fi be the set of

edges in F at the beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 364/366

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|

EADS II 20 Primal Dual Revisited

c©Harald Räcke 365/366

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|

EADS II 20 Primal Dual Revisited

c©Harald Räcke 365/366

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|

EADS II 20 Primal Dual Revisited

c©Harald Räcke 365/366

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|

EADS II 20 Primal Dual Revisited

c©Harald Räcke 365/366

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑
v∈R

deg(v) ≥
∑
C∈C
|δ(C)∩ F ′|

?
≤ 2|C| = 2|R|

EADS II 20 Primal Dual Revisited

c©Harald Räcke 365/366

ñ Suppose that no node in B has degree one.

ñ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v)

=
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B|

= 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

ñ Suppose that no node in B has degree one.

ñ Then ∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

EADS II 20 Primal Dual Revisited

c©Harald Räcke 366/366

	Introduction
	Simplex Algorithm
	Duality
	Degeneracy Revisited
	Seidels LP-algorithm
	The Ellipsoid Algorithm
	Karmarkar's Algorithm
	Karmarkar's Algorithm
	Introduction
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines: Local Search
	Scheduling on Identical Machines: Greedy
	TSP
	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing

	Advanced Rounding for Bin Packing
	Configuration LP

	MAXSAT
	Facility Location
	Integer Multicommodity Flows
	Chernoff Bounds

	Primal Dual Revisited

