SS 2012

Efficient Algorithms
and Data Structures Il

Harald Racke

Fakultat fur Informatik
TU Miinchen

http://wwwl4.1in.tum.de/lehre/2012SS/ea/

Summer Term 2012

EADS I
(© Harald Racke

to be filled...

EADS Il
(© Harald Racke

1 Introduction

Algorithm 1 Pivot(N,B,A,b,c,v,¥,e)

1: let A be the new m x n-matrix

2: be — bplay,

3: for je N —{e} do dpj — agpj/age

4: Aop — 1/ayp,

5: fori € B— {{} do

6: Bi — b; — aiebe

7 forje N-\{etdod;j =aij — aicde;j
8: aip — jaiede{)

9: U <V + Cebp

10: fOI’j e N - {e} do éj — Cj _Cedgj
11: Cp — —Celpyp

122 N < N-{e}u{f}; B~ B— {£}u{e}

Algorithm 2 Simplex(A, b, c)

: (N,B,A,b,c,v) — InitializeSimplex(A, b, c)
: let A be new n-dimensional vector
while some index j € N has ¢c; > 0 do
choose index e € N with ¢, > 0
for each i € B do
if ajc > 0 then A; — b;j/a;,
else A; —
choose index £ € B that minimizes A;
9: if Ap = oo return "‘unbounded”
10: else(N,B,A,b,c,v) = Pivot(N, B, A, b,c,v,?,e)
11: fori € Bdo x; — b;;
12: forie N do x; — O;
13: return X

NN S

Simplex Algorithm

Questions/Observations:
» How do we find the initial feasible solution?

» The final solution will be feasible, since each pivot-step
guarantees that no variable becomes negative (no problem);

» Do we terminate?

» Is the final solution optimal?

EADS Il 2 Simplex Algorithm
(© Harald Racke

Simplex Algorithm

The simplex algorithm only considers basic feasible
solutions!

EADS 1l 2 Simplex Algorithm
(© Harald Racke

Simplex Algorithm

The simplex algorithm only considers basic feasible
solutions!

Lemma 1

If a given linear program LP is bounded then there is a basic
feasible solution that gives the optimum value.

EADS 1l

2 Simplex Algorithm
(© Harald Racke

Simplex Algorithm

The simplex algorithm only considers basic feasible
solutions!

Lemma 1

If a given linear program LP is bounded then there is a basic
feasible solution that gives the optimum value.

Basic feasible solutions correspond to corner points of the
feasible region!

EADS 1l 2 Simplex Algorithm
(© Harald Racke

beer b

35a + 20b < 1190 \

4a + 4b < 160

5a +15b < 480 N

alea

EADS Il
(© Harald Racke

2 Simplex Algorithm

Let P = {x | Ax = b,x > 0} < R4.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x > 0} < R4,

Definition 2
x is a vertex of P if there is no y withx + y € Pand x — y € P.

EADS Il 2 Simplex Algorithm =] F =
(© Harald Racke

Let P = {x | Ax = b,x > 0} < R4.

Lemma 3
Then for each x € P there exists a vertex x' € P with ctx’ > ctx.

EADS Il 2 Simplex Algorithm =] F =
(© Harald Racke

Let P = {x | Ax = b,x > 0} < R4.

Lemma 3
Then for each x € P there exists a vertex x' € P with ctx’ > ctx.

This means that also the maximum is obtained at a vertex of P.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x = 0}, and let x € P. If x is a vertex of P
there is nothing to prove.

EADS Il 2 Simplex Algorithm =] F
(© Harald Racke

Let P = {x | Ax = b,x = 0}, and let x € P. If x is a vertex of P
there is nothing to prove.

Otw. there exist y + O with x + vy € P.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x = 0}, and let x € P. If x is a vertex of P
there is nothing to prove.

Otw. there exist y + O with x + vy € P.

Since A(x — y) = A(x +) (equal to b) we have Ay =0

EADS Il 2 Simplex Algorithm

(© Harald Racke

Let P = {x | Ax = b,x = 0}, and let x € P. If x is a vertex of P
there is nothing to prove.

Otw. there exist y + O with x + vy € P.
Since A(x — y) = A(x +) (equal to b) we have Ay =0

Since, ct(x = y) = ctx = cty we have ¢ty = 0 since x is maximal.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x = 0}, and let x € P. If x is a vertex of P
there is nothing to prove.

Otw. there exist y + O with x + vy € P.
Since A(x — y) = A(x +) (equal to b) we have Ay =0
Since, ct(x = y) = ctx = cty we have ¢ty = 0 since x is maximal.

Wlog. we can assume that thereis a j € {1...d} with y; <0 (otw.
redefine y as —y).

EADS Il 2 Simplex Algorithm
(© Harald Racke

Define

» A= min{—% | vj <0}.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Define

> A =min{-3 | ¥; <0},

» That’s the largest A s.t. x + Ay = 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Define

> A =min{-3 | ¥; <0},

» That’s the largest A s.t. x + Ay = 0.

» A(x +Ay) =D.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Define
> A =min{-3 | ¥; <0},

» That’s the largest A s.t. x + Ay = 0.

» A(x +Ay) =D.
» (X +Ay)k =0 but x; > 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Define

> A= min{—% | ¥j < 0}.

v

That’s the largest A s.t. x + Ay = 0.
A(x +Ay) =b.
(x +AY)x =0 but xp > 0.

v

v

v

Replace x by x + Ay. We have reduced the number of
non-zero components.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x = 0} and x € P. Let A, denote the
sub-matrix of A that contains columns j with x; > 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Let P = {x | Ax = b,x = 0} and x € P. Let A, denote the
sub-matrix of A that contains columns j with x; > 0.

Lemma 4
x is a vertex of P if and only if the columns of Ay are linearly
independent.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

EADS Il
(© Harald Racke

2 Simplex Algorithm

Proof: (<)

Assume for contradiction that x is not a vertex. Then there exists
¥ # 0 with x + y € P. Let A,, denote the sub-matrix
corresponding to the non-zero components of y.

EADS 1l 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

Assume for contradiction that x is not a vertex. Then there exists
¥ # 0 with x + y € P. Let A,, denote the sub-matrix
corresponding to the non-zero components of y.

As before we get Ay =0 (from A(x — y) = A(x + ¥)). Since
¥ # 0 A, has linearly dependent columns

EADS 1l 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

Assume for contradiction that x is not a vertex. Then there exists
¥ # 0 with x + y € P. Let A,, denote the sub-matrix
corresponding to the non-zero components of y.

As before we get Ay =0 (from A(x — y) = A(x + ¥)). Since
¥ # 0 A, has linearly dependent columns

x;j=0=y;=0,since x+y >0and x -y = 0. Therefore, A,
contains a subset of the columns of x.

EADS 1l 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

Assume for contradiction that x is not a vertex. Then there exists
¥ # 0 with x + y € P. Let A,, denote the sub-matrix
corresponding to the non-zero components of y.

As before we get Ay =0 (from A(x — y) = A(x + ¥)). Since
¥ # 0 A, has linearly dependent columns

x;j=0=y;=0,since x+y >0and x -y = 0. Therefore, A,
contains a subset of the columns of x.

Hence, Ay contains linearly dependent columns.

EADS 1l 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

EADS Il
(© Harald Racke

2 Simplex Algorithm

Proof: (<)

Suppose Ay, has linearly dependent rows. Then thereis y =0

EADS Il 2 Simplex Algorithm =] F
(© Harald Racke

Proof: (<)

Suppose Ay, has linearly dependent rows. Then thereis y =0

By adding zero-components to v we get v = 0 with Ay = 0 and

xj=0=y;=0

EADS Il 2 Simplex Algorithm

(© Harald Racke

Proof: (<)

Suppose Ay, has linearly dependent rows. Then thereis y =0

By adding zero-components to v we get v = 0 with Ay = 0 and

xj=0=y;=0

For small enough € > 0 this gives x + €y € P and x — €y € P.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Proof: (<)

Suppose Ay, has linearly dependent rows. Then thereis y =0

By adding zero-components to v we get v = 0 with Ay = 0 and

xj=0=y;=0

For small enough € > 0 this gives x + €y € P and x — €y € P.

Hence, x is not a vertex.

EADS Il 2 Simplex Algorithm
(© Harald Racke

EADS Il
(© Harald Racke

2 Simplex Algorithm

A vertex/corner-point is defined by choosing a set of linearly
independent columns.

EADS 1l 2 Simplex Algorithm
(© Harald Racke

A vertex/corner-point is defined by choosing a set of linearly
independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is
m (otw. we can remove a constraint).

EADS Il 2 Simplex Algorithm
(© Harald Racke

A vertex/corner-point is defined by choosing a set of linearly
independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is
m (otw. we can remove a constraint).

If x is a vertex then Ay has full column-rank (< m).

EADS Il 2 Simplex Algorithm
(© Harald Racke

A vertex/corner-point is defined by choosing a set of linearly
independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is
m (otw. we can remove a constraint).

If x is a vertex then Ay has full column-rank (< m).

Ay can be extended to a quadratic (m X m-matrix) with full
column rank.

EADS Il 2 Simplex Algorithm
(© Harald Racke

A vertex/corner-point is defined by choosing a set of linearly
independent columns.

We can assume wlog. that the row-rank of A (in the slack form) is
m (otw. we can remove a constraint).

If x is a vertex then Ay has full column-rank (< m).

Ay can be extended to a quadratic (m X m-matrix) with full
column rank.

A quadratic matrix Ag with full rank is called basis.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

EADS Il
(© Harald Racke

2 Simplex Algorithm

Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

The objective function may not decrease!

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

The objective function may not decrease!

Because a variable x, with £ € B is already 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

The objective function may not decrease!
Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

EADS Il 2 Simplex Algorithm
(© Harald Racke

Termination

The objective function may not decrease!

Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).
It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,
very rarely in practise.

EADS I
(© Harald Racke

2 Simplex Algorithm

How to choose the pivot-elements:

» We can choose a column e as an entering variable if ¢, > 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How to choose the pivot-elements:
» We can choose a column e as an entering variable if ¢, > 0.

» The standard choice is the column that maximizes c,.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How to choose the pivot-elements:
» We can choose a column e as an entering variable if ¢, > 0.
» The standard choice is the column that maximizes c,.

» Ifaje =0forallie{1,...,m} then the maximum is not
bounded.

EADS I
(© Harald Racke

2 Simplex Algorithm

How to choose the pivot-elements:
» We can choose a column e as an entering variable if ¢, > 0.
» The standard choice is the column that maximizes c,.

» Ifaje =0forallie{1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/ay, is minimal
among all variables i with a;s > 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How to choose the pivot-elements:

>

>

| 2

We can choose a column e as an entering variable if ¢, > 0.
The standard choice is the column that maximizes c,.

If ajp >0 forallie {1,...,m} then the maximum is not
bounded.

Otw. choose a leaving variable £ such that by/ay, is minimal
among all variables i with a;s > 0.

If several variables have minimum by/ays you reach a
degenerate basis.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How to choose the pivot-elements:

>

>

| 2

We can choose a column e as an entering variable if ¢, > 0.
The standard choice is the column that maximizes c,.

If ajp >0 forallie {1,...,m} then the maximum is not
bounded.

Otw. choose a leaving variable £ such that by/ay, is minimal
among all variables i with a;s > 0.

If several variables have minimum by/ays you reach a
degenerate basis.

Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax + Ens =b,x =0,s = 0, where s denotes the vector of
slack variables.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax + Ens =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Thens = b, x =0 is a basic feasible solution.

EADS 1l 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax + Ens =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution.
» We directly can start the simplex algorithm.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax + Ens =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution.
» We directly can start the simplex algorithm.

EADS Il 2 Simplex Algorithm
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax + Ens =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution.
» We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

EADS Il
(© Harald Racke

2 Simplex Algorithm

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >;s; > 0 then the original problem is infeasible.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >;s; > 0 then the original problem is infeasible.

4. Otw. you have x = 0 with Ax = b.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >;s; > 0 then the original problem is infeasible.
4. Otw. you have x = 0 with Ax = b.

5. From this you can get basic feasible solution.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

If >'; s; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v kW

Now you can start the Simplex for the original problem.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x = 0} (recall that A is not the original
matrix), with cit < 0 for all i. Furthermore, each basic variable
only appears in one equation with coefficient +1.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x = 0} (recall that A is not the original
matrix), with cit < 0 for all i. Furthermore, each basic variable
only appears in one equation with coefficient +1.

Of course, LP" = max{c!x | Ax = b,x = 0} has the same
optimum solution (with different objective function value).

EADS Il 2 Simplex Algorithm
(© Harald Racke

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x = 0} (recall that A is not the original
matrix), with cit < 0 for all i. Furthermore, each basic variable
only appears in one equation with coefficient +1.

Of course, LP" = max{c!x | Ax = b,x = 0} has the same
optimum solution (with different objective function value).

The best we can hope for (for LP’) is an objective function value of
0 as ¢t <0and x = 0 is required.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Optimality

In the end we have an LP of the form

max{v + ctx | Ax = b,x = 0} (recall that A is not the original
matrix), with cit < 0 for all i. Furthermore, each basic variable
only appears in one equation with coefficient +1.

Of course, LP" = max{c!x | Ax = b,x = 0} has the same
optimum solution (with different objective function value).

The best we can hope for (for LP’) is an objective function value of
0 as ¢t <0and x = 0 is required.

The basic feasible solution achieves that and is therefore optimal.

EADS Il 2 Simplex Algorithm
(© Harald Racke

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190

a,b =0

EADS I 3 Duality
(© Harald Racke

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of a,b = 0
gives us a lower bound (e.g. a = 12,b = 28 gives us a lower
bound of 800).

EADS I 3 Duality
(© Harald Racke

Duality

How do we get an upper bound to a maximization LP?

max 13a

s.t. Sa
4a

+
+
+
35a +

Note that a lower bound is easy to derive. Every choice of a,b = 0
gives us a lower bound (e.g. a = 12,b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;a;; = ¢; then }; y;b; will be an upper

bound.

23b

15b <480
4b <160
20b <1190
a,b =0

EADS Il 3 Duality

(© Harald Racke

Duality

Definition 5
Let z = max{cix | Ax = b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w =min{bty | Aly = ¢,y =0}

is called the dual problem.

EADS I 3 Duality
(© Harald Racke

Duality

Lemma 6
The dual of the dual problem is the primal problem.

EADS II 3 Duality
(© Harald Racke

Duality
Lemma 6
The dual of the dual problem is the primal problem.

Proof:

» w=min{bly | Aly > ¢,y > 0}

EADS I 3 Duality
(© Harald Racke

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:
» w =min{bly | Aly > ¢,y > 0}
» w=max{-bly | -Aly < —¢,y =0}

EADS I 3 Duality
(© Harald Racke

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:
» w =min{bly | Aly > ¢,y > 0}
» w=max{-bly | -Aly < —¢,y =0}

The dual problem is

» z=min{-cix | -Ax = —-b,x = 0}

EADS I 3 Duality
(© Harald Racke

Duality

Lemma 6
The dual of the dual problem is the primal problem.

Proof:
» w =min{bly | Aly > ¢,y > 0}
» w=max{-bly | -Aly < —¢,y =0}

The dual problem is
» z=min{-cix | -Ax = —-b,x = 0}

» z =max{cix | Ax = b,x = 0}

EADS I 3 Duality
(© Harald Racke

Weak Duality

Let z = max{cix | Ax < b,x = 0} and
w =min{bty | Aly > ¢,y > 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

y is dual feasible, iff y € {y | Aly > ¢,y > 0}.

EADS I 3 Duality
(© Harald Racke

Weak Duality

Let z = max{cix | Ax < b,x = 0} and
w =min{bty | Aly > ¢,y > 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

y is dual feasible, iff y € {y | Aly > ¢,y > 0}.

Theorem 7 (Weak Duality)
Let X be a primal feasible and let y be dual feasible. Then

c'X<z<w=<by.

EADS I 3 Duality
(© Harald Racke

Weak Duality

EADS Il
(© Harald Racke

3 Duality

Weak Duality

Aty > ¢ = xtAly = Xtc

EADS Il
(© Harald Racke

3 Duality

Weak Duality

Aty > ¢ = XAy > xte (X = 0)

EADS Il 3 Duality
(© Harald Racke

Weak Duality

Aty > ¢ = XAy > xte (X = 0)

AxX <b

EADS Il 3 Duality
(© Harald Racke

Weak Duality

Aty > ¢ = XAy > xte (X = 0)

AX <b = ytAX < P'b

EADS II 3 Duality
(© Harald Racke

Weak Duality

At > c = RLALD > ke (% = 0)

AX <b = ytAX < P'b (7 = 0)

EADS II 3 Duality
(© Harald Racke

Weak Duality

At > c = RLALD > ke (% = 0)

AX <b = ytAX < P'b (7 = 0)

EADS II 3 Duality
(© Harald Racke

Weak Duality

AlY = c = RALD = Rlc (% = 0)
AX <b = ytAX < P'b (7 = 0)

This gives

EADS Il 3 Duality
(© Harald Racke

IA

<

Weak Duality

Aty > ¢ = XAy > xte (X = 0)
AR <b = YA < $th (3 = 0)

This gives

¢l < PLAX < by .

Since, there exist primal feasible X with c!X = z, and dual
feasible with bly = w we get z < w.

EADS I 3 Duality
(© Harald Racke

Weak Duality

Aty > ¢ = XAy > xte (X = 0)
AR <b = YA < $th (3 = 0)

This gives

¢l < PLAX < by .

Since, there exist primal feasible X with c!X = z, and dual
feasible with bly = w we get z < w.

If P is unbounded then D is infeasible.

EADS I 3 Duality
(© Harald Racke

The following linear programs form a primal dual pair:

z =max{cix | Ax =b,x > 0}

w =min{b'y | Aly < ¢}

EADS I 3 Duality
(© Harald Racke

proof...

EADS Il
(© Harald Racke

3 Duality

Strong Duality

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

z¥ =w*

EADS Il

3 Duality
(© Harald Racke

Lemma 9 (Projection Lemma)

Let X = R™ be a non-empty convex set, and let v ¢ X. Then there
exist x* € X with minimum distance from y. Moreover for all

x € X we have (y — x*)t(x —x*) <0.

Lemma 10 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Thenmin{ f(x) : x € X} exists.

EADS Il 3 Duality
(© Harald Racke

Proof of the Projection Lemma:
» Define f(x) = lly — x|

EADS Il 3 Duality
(© Harald Racke

Proof of the Projection Lemma:
» Define f(x) = ||y — x|l.
» We want to apply Weierstrass but X may not be bounded.

EADS Il 3 Duality
(© Harald Racke

Proof of the Projection Lemma:
» Define f(x) = ||y — x|l.
» We want to apply Weierstrass but X may not be bounded.

» X + (0. Hence, there exists x’ € X.

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma:
Define f(x) = |y — x|
» We want to apply Weierstrass but X may not be bounded.

v

v

X + (. Hence, there exists x’ € X.

\4

Define X' = {x e X | ly — x|l < [l — x'|l}. This set is closed
and bounded.

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma:
Define f(x) = |y — x|
» We want to apply Weierstrass but X may not be bounded.

v

v

X + (. Hence, there exists x’ € X.

\4

Define X' = {x e X | ly — x|l < [l — x'|l}. This set is closed
and bounded.

Applying Weierstrass gives the existence.

\ 4

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

EADS II 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

EADS Il 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly = x*|1%

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*I12 < lly — x* —e(x — x*)|?

EADS I 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*I12 < lly — x* —e(x — x*)|?
=y —xII? +€llx — x*|I? = 2e(y — x*) (x — x*)
EADS 1l 3 Duality

(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*I12 < lly — x* —e(x — x*)|?

=y —xII? +€llx — x*|I? = 2e(y — x*) (x — x*)

Hence, (y — x*)t(x — x*) < %ellx —x*||2.

EADS Il 3 Duality
(© Harald Racke

Proof of the Projection Lemma (continued):

x* is minimum. Hence ||y — x*[|? < ||y — x| for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*I12 < lly — x* —e(x — x*)|?

=|ly — x> + €2llx — x*||> - 2e(y — x*)(x — x*)
Hence, (y — x*)t(x — x*) < %ellx —x*||2.

Letting € — 0 gives the result.

EADS Il 3 Duality
(© Harald Racke

Theorem 11 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, o € R that separates vy from X. (aly < «;
alx = « for all x € X)

EADS 1l

3 Duality
(© Harald Racke

Proof of the hyperplane lemma

» Let x* € X be closest point to y in X.

EADS II 3 Duality
(© Harald Racke

Proof of the hyperplane lemma
» Let x* € X be closest point to y in X.
» By previous lemma (y — x*)!(x — x*) <0 for all x € X.

EADS Il 3 Duality
(© Harald Racke

Proof of the hyperplane lemma
» Let x* € X be closest point to y in X.
» By previous lemma (y — x*)!(x — x*) <0 for all x € X.
» Choose a = (x* — y) and o = alx*.

EADS II 3 Duality
(© Harald Racke

Proof of the hyperplane lemma
» Let x* € X be closest point to y in X.
» By previous lemma (y — x*)!(x — x*) <0 for all x € X.
» Choose a = (x* — y) and o = alx*.

» Forx € X:al(x —x*) =0, and, hence, atx > «.

EADS II 3 Duality
(© Harald Racke

Proof of the hyperplane lemma
» Let x* € X be closest point to y in X.
» By previous lemma (y — x*)!(x — x*) <0 for all x € X.
» Choose a = (x* — y) and o = alx*.
» Forx € X:at(x —x*) =0, and, hence, atx > «.

» Also, aly =al(x* —a) = x - |lal® < «

EADS Il 3 Duality
(© Harald Racke

Lemma 12 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. IxeR*withAx =b,x =0
2. 3y e R™ with Aty >0, bty <0

EADS I 3 Duality
(© Harald Racke

Lemma 12 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. IxeR*withAx =b,x =0
2. 3y e R™ with Aty >0, bty <0
Assume X satisfies 1. and ¥ satisfies 2. Then

0>y'b=y'Ax >0

EADS I 3 Duality
(© Harald Racke

Lemma 12 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. IxeR*withAx =b,x =0
2. 3y e R™ with Aty >0, bty <0
Assume X satisfies 1. and ¥ satisfies 2. Then
0>y'b=y'Ax >0

Hence, at most one of the statements can hold.

EADS I 3 Duality
(© Harald Racke

Proof of Farkas Lemma

EADS Il
(© Harald Racke

3 Duality

Proof of Farkas Lemma

Now, assume that 1. does not hold.

EADS Il 3 Duality
(© Harald Racke

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.

EADS Il 3 Duality
(© Harald Racke

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.

Let v be a hyperplane that separates b from S. Hence, y!'b < «
and y's > «forall s € S.

EADS Il 3 Duality
(© Harald Racke

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.

Let v be a hyperplane that separates b from S. Hence, y!'b < «
and y's > «forall s € S.

0eS=>ux=<0=yb<0

EADS Il 3 Duality
(© Harald Racke

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider § = {Ax : x > 0} so that S closed, convex, b ¢ S.

Let v be a hyperplane that separates b from S. Hence, y!'b < «
and y's > «forall s € S.

0eS=>ux=<0=yb<0

ylAx > « for all x > 0. Hence, y!A > 0 as we can choose x
arbitrarily large.

EADS Il 3 Duality
(© Harald Racke

Lemma 13 (Farkas Lemma; different version)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x >0
2. 3y e R™ with Aty >0,bty <0,y =0

EADS I 3 Duality
(© Harald Racke

Proof of Farkas Lemma Il

proof...

EADS Il
(© Harald Racke

3 Duality

Proof of Strong Duality

P: z =max{cix | Ax <b,x =0}

D: w =min{bly | Aty > ¢,y =0}

Theorem 14 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

zZ=Ww .

EADS I 3 Duality
(© Harald Racke

Proof of Strong Duality

EADS Il
(© Harald Racke

3 Duality

Proof of Strong Duality

z < w: follows from weak duality

EADS Il 3 Duality
(© Harald Racke

Proof of Strong Duality

z < w: follows from weak duality
zZ > w:
EADS I 3 Duality

(© Harald Racke

Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

EADS I 3 Duality
(© Harald Racke

Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R"
s.t. Ax < b
—clx = -«
x = 0
EADS 1l 3 Duality

(© Harald Racke

Proof of Strong Duality

N
IA

zZ = WwW:

w: follows from weak duality

We show z < o implies w < «.

dx € R"
s.t. Ax
—ctx
X

EADS I
(© Harald Racke

A IA

%

dy e R"™;z e R

3 Duality

s.t.

Aty —cz
ybt — xz
Y,z

\%

vV A

Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx e R™ dy e R"™;z e R
st. Ax < b s.t. Aty —cz
—clx < -« ybt — xz
x = 0 v,z

From the definition of & we know that the first system is
infeasible; hence the second must be feasible.

EADS I 3 Duality
(© Harald Racke

\%

vV A

Proof of Strong Duality

dy e R";z e R

1\

vV A

EADS Il
(© Harald Racke

s.t. Aty —cz
yb! — «z
v,z

3 Duality

Proof of Strong Duality

dy e RM™;zeR

sit. Aty —cz
ybt — oz
.,z

If the solution y,z has z = 0 we have that

dy e R™
s.it. Aty >
ybt <
A=
is feasible.
EADS I 3 Duality

(© Harald Racke

%

vV A

Proof of Strong Duality

dy e RM™;zeR

%
S

sit. Aty —cz
ybt—oz < 0
v,z =

If the solution y,z has z = 0 we have that

dy e R™
sit. Aty > 0
ybt < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

EADS I 3 Duality
(© Harald Racke

Proof of Strong Duality

EADS Il
(© Harald Racke

3 Duality

Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.

EADS II 3 Duality
(© Harald Racke

Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.

We can rescale this solution (scaling both y and z) s.t. z = 1.

EADS Il 3 Duality

(© Harald Racke

Proof of Strong Duality

Hence, there exists a solution y, z with z > 0.
We can rescale this solution (scaling both y and z) s.t. z = 1.

Then 1y is feasible for the dual but by < «. This means that

w < K.

EADS II 3 Duality

(© Harald Racke

Simplex in Matrix Notation

EADS II 3 Duality
(© Harald Racke

Simplex in Matrix Notation

Given a linear program in slack form

z =max{cix | Ax =b;x >0} .

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

Given a linear program in slack form

z =max{cix | Ax =b;x >0} .

The simplex algorithm (for a given basis B) writes the equations

in the following form:

z = U+éhxn
XBp = b - ANXN
3 Duality

EADS Il
(© Harald Racke

Simplex in Matrix Notation

Given a linear program in slack form

z =max{cix | Ax =b;x >0} .

The simplex algorithm (for a given basis B) writes the equations
in the following form:

z 0+ Eehxn

XBp = b—ANXN

Here Ay is a matrix that contains one column for every non-basis
variable x;, i € N. Similarly, éf\, is an |N|-dimensional vector.

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

EADS II 3 Duality
(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

We have
z=Ax+b

EADS II 3 Duality
(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

We have
Z=AX+I9=ABXB+ANXN+17

EADS II 3 Duality
(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

We have
Z=AX+I9=ABXB+ANXN+17
This gives
ABXB =b - ANXN
EADS II 3 Duality

(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

We have
Z=AX+I9=ABXB+ANXN+17
This gives
ABXB =b - ANXN
and hence

XB = Al_;lb - AEIANXN

since the matrix Ag is linearly independent.

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

We can directly compute the matrix Ay, the vector i), and the
constant term ¥ for a given basis B.

We have
Z=AX+I9=ABXB+ANXN+17
This gives
ABXB =b - ANXN
and hence b An

xp =|Ag'b|-|Ag' AnKn

since the matrix Ag is linearly independent.

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The objective function is given by z = c¢fx = ckxp + cfxn.

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The objective function is given by z = c¢fx = ckxp + cfxn.

Plugging in xp = Az'b — Az Anxy gives

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The objective function is given by z = c¢fx = ckxp + cfxn.
Plugging in xp = Az'b — Az Anxy gives

z = ch(Aglh — AgtAnxn) + clixn

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The objective function is given by z = c¢fx = ckxp + cfxn.
Plugging in xp = Az'b — Az Anxy gives

z = ch(Aglh — AgtAnxn) + clixn
= cbAR'b + (¢, - cbAg AN XN

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The objective function is given by z = c¢fx = ckxp + cfxn.
Plugging in xp = Az'b — Az Anxy gives

z = ch(Aglh — AgtAnxn) + clixn
=LA b|+[(ck - chAg ANy
v CN

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form
(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form

(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

To see this observe that

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form

(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

To see this observe that

(ct—chAz A)x

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form

(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

To see this observe that

(ct—chAz A)x

= chxp + chxn — cbAg Apxp — chbAg AN xn

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form

(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

To see this observe that

(ct—chAptA)x
= cpXp + CyXN — ChA Apxp — cpAR' A
= CpXB + CNXN — CpAp ABXB — CpAp ANXN

= chxn — cbAg Anxy

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is

of the form
(ct = ytA)x

this means the optimization direction is given by the inital
direction plus a linear combination of the rows of A.

To see this observe that

(ct—chAz A)x
= cpXp + CyXN — ChA Apxp — cpAR' A
= CpXB + CNXN — CpAp ABXB — CpAp ANXN
t ta-1
= CNXN — CgAg ANXN

= (ck — cLAZ AN xN

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The non-constant part of the objective function in any iteration is
of the form

(ct = ytA)x
this means the optimization direction is given by the inital

direction plus a linear combination of the rows of A.

To see this observe that

yt

b
= chxp + chxn — cbAg Apxp — chbAg AN xn
= chxn — cbAg Anxy
= ‘(cﬁ, - clt;AglAN)lxN

&N

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have

At At L A-1

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

A =

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

yia= [»'Ap y'AN |

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

yia= [»'Ap y'AN |
= | chAz'Ap chAg'AN |

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

yia= [»'Ap y'AN |
= | chAz'Ap chAg'AN |

t .t
[e e]

%

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

When Simplex terminates we have
NN t A-1

y is a feasible solution to the dual:

ytA

%

Il
O M/ —

9
by~
>
>+
—_
>
o]
9
o]
>
oo
—_
>
Z
[

(Here we assumed that B = {1,...,m} which can be obtained by
renaming variables; without this assumption the notation
becomes much more cumbersome)

EADS I 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

ytb

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

vib = cfAglD

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

vib = cfAglD

= chxp

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

vib = cfAglD
= chxp

= clxn + chxp

EADS Il 3 Duality
(© Harald Racke

Simplex in Matrix Notation

The profit of the primal basic feasible solution (xy = 0;
Xp=Db= Aglb) is equal to the cost of the dual solution y.

vib = cfAglD
= chxp
=ckxn +chkx
= CNAN BXB

=clx

EADS Il 3 Duality
(© Harald Racke

Complementary Slackness

Lemma 15
Assume a linear program P = max{ctx | Ax < b;x = 0} has
solution x* and its dual D = min{bty | Ay > ¢;y > 0} has
solution y*.

1. Ifx;!‘ > 0 then the j-th constraint in D is tight.

. If the j-th constraint in D is not tight than x = 0.

2
3. If ¥} > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than y; = 0.

EADS I 3 Duality
(© Harald Racke

Complementary Slackness

Lemma 15
Assume a linear program P = max{ctx | Ax < b;x = 0} has
solution x* and its dual D = min{bty | Ay > ¢;y > 0} has
solution y*.

1. Ifx;!‘ > 0 then the j-th constraint in D is tight.

If the j-th constraint in D is not tight than xJ’.k =0.

2.
3. If ¥} > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than y; = 0.

If we say that a variable xj* (¥{) has slack if x}k >0y >0, (e,
the corresponding variable restriction is not tight) and a contraint
has slack if it is not tight, then the above says that for a
primal-dual solution pair it is not possible that a constraint and
its corresponding (dual) variable has slack.

EADS I 3 Duality
(© Harald Racke

Complementary Slackness
Proof:
Analogous to the proof of weak duality we obtain

cix* < y*tAx* < bty*

EADS I 3 Duality
(© Harald Racke

Complementary Slackness
Proof:
Analogous to the proof of weak duality we obtain

clx* < y*Ax* < bty*
Because of strong duality we then get

cix* = y*tAx* _ bty*

EADS I 3 Duality
(© Harald Racke

Complementary Slackness
Proof:
Analogous to the proof of weak duality we obtain

clx* < y*Ax* < bty*
Because of strong duality we then get
chx* = y*tAx* _ bty*

This gives e.g.
2 X[(' A)j =) =0
J

EADS I 3 Duality
(© Harald Racke

Complementary Slackness
Proof:
Analogous to the proof of weak duality we obtain

cix* < y*tAx* < bty*
Because of strong duality we then get
clx* = y*tAx* _ bty*

This gives e.g.
2 X[(' A)j =) =0
J

From the constraint of the dual it follows that y!A > 0. Hence the
left hand side is a sum over the product of non-negative number.
Hence, if e.g. ('A); — ¢; > 0 (the j-th constraint in the dual is
not tight) then x; = 0 (2.). The result for (1./3./4.) follows
similarly.

EADS I 3 Duality
(© Harald Racke

» Brewer: find mix of ale and beer that maximizes profits
max 13a + 23b

s.t. 5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b =0

EADS I 3 Duality
(© Harald Racke

» Brewer: find mix of ale and beer that maximizes profits
max 13a + 23b

s.t. 5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b =0

» Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13

15C + 4H + 20M = 23
C,HM =0

EADS I 3 Duality
(© Harald Racke

» Brewer: find mix of ale and beer that maximizes profits
max 13a + 23b

s.t. 5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b =0

» Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.

EADS II 3 Duality
(© Harald Racke

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

EADS I 3 Duality
(© Harald Racke

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €q,

and &y, respectively.

EADS Il 3 Duality

(© Harald Racke

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €q,

and &y, respectively.

EADS Il 3 Duality

(© Harald Racke

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €q,
and &y, respectively.

The profit increases to max{ctx | Ax < b + &x = 0}.

EADS Il 3 Duality

(© Harald Racke

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

» We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €q,
and &y, respectively.

The profit increases to max{ctx | Ax < b + &x = 0}. Because of
strong duality this is equal to

min (bt +€l)y
s.t. Aly
y

"

\%
(@)

EADS Il 3 Duality
(© Harald Racke

Interpretation of Dual Variables

EADS II 3 Duality
(© Harald Racke

Interpretation of Dual Variables

If € is small enough then the optimum dual solution y* does not
change. Therefore the profit increases by zieiyi*.

EADS II 3 Duality
(© Harald Racke

Interpretation of Dual Variables

If € is small enough then the optimum dual solution y* does not
change. Therefore the profit increases by zieiyi*.

Therefore we can interpret the dual variables as marginal prices.

EADS I 3 Duality
(© Harald Racke

Interpretation of Dual Variables

If € is small enough then the optimum dual solution y* does not
change. Therefore the profit increases by zieiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

» If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).

EADS II 3 Duality
(© Harald Racke

Interpretation of Dual Variables

If € is small enough then the optimum dual solution y* does not
change. Therefore the profit increases by zieiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

» If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).

» If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.
Hence, it makes no sense to have left-overs of this resource.
Therefore its slack must be zero.

EADS II 3 Duality
(© Harald Racke

Flows

Definition 16
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f : V X V — Rj that satisfies

1. For each edge (x,y)

(capacity constraints)

EADS I 3 Duality
(© Harald Racke

Flows

Definition 16
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f : V X V — Rj that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

zfvx = fov .

(flow conservation constraints)

EADS II 3 Duality
(© Harald Racke

Flows

Definition 17
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - zfxs .

EADS II 3 Duality
(© Harald Racke

Flows

Definition 17
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .

Maximum Flow Problem: Find an (s, t)-flow with maximum
value.

EADS I 3 Duality
(© Harald Racke

LP-Formulation of Maxflow

max D2 fsz— 22 fas
st. V(z,w) eV xV Fow £ Caw Yaw
Vw#s,t X fwz-2:fzw = 0 Pw
fzw = O
min 2 (xy) Cxlxy
s.t. fxy X,y £5,8)1 1xy+1lpx—1p, = O
fsy (¥ #5,t): 185y -1py = 1
fxs (x #£5,1): 10xs+1px > -1
Sty (¥ #5,t): Lty ~-1py = 0
fxt (x = 5,t): 105t +1py > 0
Sst: 105 > 1
Sts: 14 > -1
sy > 0
EADS I 3 Duality

(© Harald Racke

LP-Formulation of Maxflow

:
EADS Il 3 Duality «OrAaFraEr A E»
(© Harald Récke 57/366

LP-Formulation of Maxflow

min

Z(xy) nyyxy

st fuy (6, #8500 xy+1py—1p,

fsy (¥ #5,b):
Jxs (x =5,1) :
Joy (¥ #5,t):
fxt (x =5,t):
St
Sis:

with p; = 0 and p; = —1.

EADS I
(© Harald Racke

1459+ ps—1py

Hxs+1px— ps
Liy+ pi—1py
10yt +1px— p¢
W+ ps— pi
Wis+ pi— ps

sy

3 Duality

vV IV IV IV IV IV IV

%

S O O O O © O O

LP-Formulation of Maxflow

:
EADS Il 3 Duality «OrAaFraEr A E»
(© Harald Racke 59/366

EADS Il
(© Harald Racke

3 Duality

We can interpret the £y, value as assigning a length to every
edge.

EADS II 3 Duality = 5
(© Harald Racke

We can interpret the £y, value as assigning a length to every
edge.

The value (—py) for a variable, then can be seen as the distance
of x to t (where the distance from s to t is required to be 1 since
ps = —1).

EADS I
(© Harald Racke

3 Duality

We can interpret the £y, value as assigning a length to every
edge.

The value (—py) for a variable, then can be seen as the distance
of x to t (where the distance from s to t is required to be 1 since
ps = —1).

The constraint (—px) < fxy + (—py) then simply follows from a
triangle inequality
(d(x,t) <d(x,y) +d(y,t) > d(x,t) <¥lxy +d(y,1)).

EADS I 3 Duality
(© Harald Racke

We can interpret the £y, value as assigning a length to every
edge.

The value (—py) for a variable, then can be seen as the distance
of x to t (where the distance from s to t is required to be 1 since
ps = —1).

The constraint (—px) < fxy + (—py) then simply follows from a
triangle inequality
(d(x,t) <d(x,y) +d(y,t) > d(x,t) <¥lxy +d(y,1)).

If we would have formulated the primal differently by
multiplying the equality-constraint by —1 we would have had
an easier interpretation of dual variables. Set p; = 1;p; = 0
and interpret py as the distance to t.

EADS Il 3 Duality
(© Harald Racke

One can show that the optimum LP-solution for the Maxflow
problem gives an integral assignment of variables.

EADS I 3 Duality
(© Harald Racke

One can show that the optimum LP-solution for the Maxflow
problem gives an integral assignment of variables.

This means px = —1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value —1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

EADS I 3 Duality
(© Harald Racke

One can show that the optimum LP-solution for the Maxflow
problem gives an integral assignment of variables.

This means px = —1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value —1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.

EADS Il 3 Duality
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x=20,and b > 0.

EADS Il 3 Duality
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x=20,and b > 0.

» The standard slack from for this problem is
Ax + Eqms =b,x =0,s = 0, where s denotes the vector of
slack variables.

EADS I 3 Duality
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x=20,and b > 0.

» The standard slack from for this problem is
Ax + Eqms =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Thens = b, x =0 is a basic feasible solution.

EADS I 3 Duality
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x=20,and b > 0.

» The standard slack from for this problem is
Ax + Eqms =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution.
» We directly can start the simplex algorithm.

EADS I 3 Duality
(© Harald Racke

How do we come up with an initial solution?

» Ax <b,x=20,and b > 0.

» The standard slack from for this problem is
Ax + Eqms =b,x =0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution.
» We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an
arbitrary problem?

EADS Il 3 Duality
(© Harald Racke

Two phase algorithm

EADS Il
(© Harald Racke

3 Duality

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

EADS I 3 Duality
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

EADS I 3 Duality
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >; v; > 0 then the original problem is infeasible.

EADS I 3 Duality
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >; v; > 0 then the original problem is infeasible.

4. Otw. you have x = 0 with Ax = b.

EADS Il 3 Duality
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >; v; > 0 then the original problem is infeasible.
4. Otw. you have x = 0 with Ax = b.

5. From this you can get basic feasible solution.

EADS I 3 Duality
(© Harald Racke

Two phase algorithm

Suppose we want to maximize cfx s.t. Ax = b,x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ; v; s.t. Ax + Ej,yv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.

If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v kW

Now you can start the Simplex for the original problem.

EADS Il 3 Duality
(© Harald Racke

Degeneracy Revisited

EADS Il
(© Harald Racke

4 Degeneracy Revisited

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Change LP := max{c!x, Ax = b;x = 0} into
LP' := max{cix,Ax = b’,x = 0} such that

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Change LP := max{c!x, Ax = b;x = 0} into
LP' := max{cix,Ax = b’,x = 0} such that

I. LP is feasible

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:

Change LP := max{c!x, Ax = b;x = 0} into

LP' := max{cix,Ax = b’,x = 0} such that
I. LP is feasible

Il. If a set B of basis variables corresponds to an infeasible basis
(i.e. Az'b # 0) then B corresponds to an infeasible basis in
LP’ (note that columns in Ag are linearly independent).

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Change LP := max{c!x, Ax = b;x = 0} into
LP' := max{cix,Ax = b’,x = 0} such that
I. LP is feasible
Il. If a set B of basis variables corresponds to an infeasible basis
(i.e. Az'b # 0) then B corresponds to an infeasible basis in
LP’ (note that columns in Ag are linearly independent).

lll. LP has no degenerate basic solutions

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Pertubation

Let B be index set of a basis with basic solution

x5 =Ag'b =0 (i.e. Bis feasible)

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Pertubation

Let B be index set of a basis with basic solution
x5 =Ag'b =0 (i.e. Bis feasible)
Fix
b':=b+Apg| : | fore>0 .
Em

This is the pertubation that we are using.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

& &
-1 . * .
AB b + AB . = XB + : = 0 .
em em
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Property Il

Let B be a non-feasible basis. This means (Aglb)i < 0 for some
row i.

EADS Il 4 Degeneracy Revisited =] F =
(© Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

&

Azl | b+ Ap

Em

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ap| : = (A3'b)i + | Az'Ap | <0

em em

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ap| : = (A3'b)i + | Az'Ap | <0

em em

Hence, B is not feasible.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.
A polynom of degree at most m has at most m roots (Nullstellen).

Hence, € > 0 small enough gives that no component of the above
vector is 0.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.
A polynom of degree at most m has at most m roots (Nullstellen).

Hence, € > 0 small enough gives that no component of the above
vector is 0. Hence, no degeneracies.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
Simulate behaviour of LP’ without explicitly doing a perturbation.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP’ and LP
do the same (i.e., choose the same variable).

EADS Il

4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP’ and LP
do the same (i.e., choose the same variable).

Otherwise we have to be careful.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

&
4
b =b+
Em
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has dy, < 0 and
minimizes
Op

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has dy, < 0 and

minimizes R
b
0p= "
Ape
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has dy, < 0 and

minimizes R)
o, = be __ (As'b)
dﬂe (AﬁlA*e)y
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has dy, < 0 and
minimizes R
o, o ___(Ag'b)
dﬂe (AﬁlA*e)y

{ is the index of a leaving variable within B. This means if e.qg.
B ={1,3,7,14} and leaving variable is 3 then £ = 2.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

Definition 18
U <jex v if and only if the first component in which u and v differ
fulfills u; < v;.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

&

Azl | b+
B
m
0p = — £ L

= -1

(AB A*e)#

EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& 1 &
Agt (b | En)
Azl b+ B "
m
0, - - "))y _ € ?
(AﬁlA*e){J (AEIA*e)ﬁ
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& 1 &
Agt (b | En)
Azl b+ B "
o gm ¢ _ em ’
(AﬁlA*e){J (AEIA*e)ﬁ
1
_ {Uthrowof Ag' (b | Em) | €
(Ap'Axe)y
cm
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
_ L-th row of Agl(b | Em)
(Ap'Ase)p
is lexicographically minimal.
EADS Il 4 Degeneracy Revisited

(© Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
_-th row of Ag' (b | Em)

(Ap'Ase)p
is lexicographically minimal.

Of course only including rows with (AglA*e)g < 0.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
_-th row of Ag' (b | Em)

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g < 0.

This technique guarantees that in each step of the simplex
algorithm the objective function will increase.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Remarks about Simplex

Observation
The simplex algorithm takes at most (:&) iterations. Each
iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for
choosing entering and leaving variables) there exist lower bounds
that require the algorithm to have exponential running time
(Q(22M))) (e.g. Klee Minty 1972).

EADS Il 4 Degeneracy Revisited
(© Harald Racke

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Q(22™"*)) for & > 0) (Friedmann,
Hansen, Zwick 2011).

EADS Il

4 Degeneracy Revisited
(© Harald Racke

Remarks about Simplex

Conjecture (Hirsch)
The edge-vertex graph of an m-facet polytope in d-dimensional
Euclidean space has diameter no more than m — d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form
O(poly(m,d)) is open.

EADS Il 4 Degeneracy Revisited
(© Harald Racke

5 Seidels LP-algorithm

» Suppose we want to solve max{ctx | Ax < b;x = 0}, where
x € R4 and we have m constraints.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Suppose we want to solve max{ctx | Ax < b;x = 0}, where
x € R and we have m constraints.

» In the worst-case Simplex runs in time roughly
Omm-+d) (mwtd>) ~ (m+ d)™. (better bounds on the
running time exist, but will not be discussed here).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Suppose we want to solve max{ctx | Ax < b;x = 0}, where
x € R4 and we have m constraints.

» In the worst-case Simplex runs in time roughly
Omm-+d) (mwtd>) ~ (m+ d)™. (better bounds on the
running time exist, but will not be discussed here).

» The following algorithm runs in time O(m(d + 1)!).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Suppose we want to solve max{ctx | Ax < b;x = 0}, where
x € R and we have m constraints.

» In the worst-case Simplex runs in time roughly
Omm-+d) (mwtd>) ~ (m+ d)™. (better bounds on the
running time exist, but will not be discussed here).

» The following algorithm runs in time O(m(d + 1)!).

» It solves max{ctx | Ax < b;—M < x; < M}. Here we added
so-called bounding box constraints for the variables x; to
simplify the description.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Suppose we want to solve max{ctx | Ax < b;x = 0}, where
x € R4 and we have m constraints.

» In the worst-case Simplex runs in time roughly
Omm-+d) (mnzd>) ~ (m+ d)™. (better bounds on the
running time exist, but will not be discussed here).

» The following algorithm runs in time O(m(d + 1)!).

» It solves max{ctx | Ax < b;—M < x; < M}. Here we added
so-called bounding box constraints for the variables x; to
simplify the description.

» We use H to denote the set of constraints (a set of
half-spaces of R%). H does not include the bounding box
constraints.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

1: if d = 1 then solve 1-dimensional problem and return;

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

1: if d = 1 then solve 1-dimensional problem and return;
2: if H = 0 then solve problem on bounding box and return;

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

1: if d = 1 then solve 1-dimensional problem and return;
2: if H = 0 then solve problem on bounding box and return;
3. choose random constraint h € H

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

1: if d = 1 then solve 1-dimensional problem and return;

2: if H = 0 then solve problem on bounding box and return;
3. choose random constraint h € H
4

- H — H\ {(h}

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then solve problem on bounding box and return;
choose random constraint h €

cH — H\ {(h}

&* — SeidellLP(H,d)

u DN W N =

5 Seidels LP-algorithm

Algorithm 3 SeidellLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2: if H = 0 then solve problem on bounding box and return;
3: choose random constraint h €

4.
5
6
7

H — 3\ {h}

. X* < SeidelLP(H, d)
. if x* fulfills h then

return x*

5 Seidels LP-algorithm

Algorithm 3 SeidellLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then solve problem on bounding box and return;
choose random constraint h €
H — 3\ {h}
&* — SeidellLP(H,d)
if x* fulfills h then
return x*
// optimal solution fulfills h with equality, i.e., aélx = by

NP IN D

5 Seidels LP-algorithm

Algorithm 3 SeidelLP(H ,d)

1: if d = 1 then solve 1-dimensional problem and return;

2: if H = 0 then solve problem on bounding box and return;
3: choose random constraint h €

4 H — H\ {(h}

5: X* — SeidelLP(H,d)

6: if x* fulfills h then

7 return x*

8: // optimal solution fulfills h with equality, i.e., aélx = by
9: solve aflx = by, for some variable xy;

10: eliminate this variable in all constraints from # .

5 Seidels LP-algorithm

Algorithm 3 SeidellLP(H,d)
: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then solve problem on bounding box and return;
choose random constraint h €
H — 3\ {h}
&* — SeidellLP(H,d)
if x* fulfills h then
return x*
// optimal solution fulfills h with equality, i.e., aélx = by
solve aflx = by, for some variable xy;
. eliminate this variable in all constraints from 7.
: Transform box constraints for xp into normal constraints and
add them to #.

= 0 P H®»JDPILHTDIDEN I

—_ =

5 Seidels LP-algorithm

Algorithm 3 SeidellLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then solve problem on bounding box and return;

choose random constraint h €

H — 3\ {h}

&* — SeidellLP(H,d)

if x* fulfills h then

return x*

// optimal solution fulfills h with equality, i.e., aélx = by

solve aflx = by, for some variable xy;
. eliminate this variable in all constraints from 7.
: Transform box constraints for xp into normal constraints and
add them to #.

* — SeidelLP(H ,d — 1)

—
= 0 P H®»JDPILHTDIDEN I

p—
N

5 Seidels LP-algorithm

Algorithm 3 SeidellLP(H,d)
: if d = 1 then solve 1-dimensional problem and return;
. if H = (then solve problem on bounding box and return;
: choose random constraint h € H
cH — H\ {(h}
&* — SeidellLP(H,d)
if x* fulfills h then
return x*
// optimal solution fulfills h with equality, i.e., aélx = by
solve aflx = by, for some variable xy;
. eliminate this variable in all constraints from 7.
: Transform box constraints for xp into normal constraints and
add them to #.
* — SeidelLP(H ,d — 1)
: add the value of xp to X* and return the solution

—
= 0 P H®»JDPILHTDIDEN I

—_ -
w N

5 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0O there are only the box constraints. We
select x7 = M if ¢j = 0, otw. we choose x; = —M. This
takes time O(d).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0O there are only the box constraints. We
select x7 = M if ¢j = 0, otw. we choose x; = —M. This
takes time O(d).

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0O there are only the box constraints. We
select x7 = M if ¢j = 0, otw. we choose x; = —M. This
takes time O(d).

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and x* does not fulfill h we need time

O(dm) to eliminate xp. Then we make a recursive call that
takes time T(m + 1,d — 1).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0O there are only the box constraints. We
select x7 = M if ¢j = 0, otw. we choose x; = —M. This
takes time O(d).

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and x* does not fulfill h we need time
O(dm) to eliminate xp. Then we make a recursive call that
takes time T(m + 1,d — 1).

» The probability of being unlucky is at most d/m as there are
at most d constraints whose removal will increase the
objective function.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

This gives the recurrence

O(m) ifd=1
T 4 o(d) ifd>1landm =0
M) =1 o)+ Tam - 1.d)+
4(Odm)+Tim+1,d-1)) otw.
EADS II 5 Seidels LP-algorithm

(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the ©@-notation.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

T(m,1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

T(m,1) <Cm

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

T(m,1) <Cm < Cf(1)max(1l,m—1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Let C be the constant in the @-notation.
» We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Let C be the constant in the @-notation.
We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

v

v

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

v

d>1,m=0:

T(m,d)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Let C be the constant in the @-notation.
We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

v

v

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

v

d>1,m=0:

T(m,d) < 0(d)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Let C be the constant in the @-notation.
We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

v

v

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

v

d>1,m=0:

T(m,d) <0O0(d) <Cd

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Let C be the constant in the @-notation.
We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

v

v

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

v

d>1,m=0:

T(m,d) <0(d) <Cd < Cf(d)max(1l,m—1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

Let C be the constant in the @-notation.
We show T(m,d) < Cf(d) max(1l,m — 1).
»d=1:

v

v

T(m,1) <Cm < Cf(1)max(1l,m — 1) for f(1) =2

v

d>1,m=0:

T(m,d) <0(d) <Cd < Cf(d)max(1l,m —1) for f(d) =d

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:

T(1,4)

EADS Il
(© Harald Racke

5 Seidels LP-algorithm

5 Seidels LP-algorithm

»d>1m=1:

T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:
T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

=0(d) +T(0,d) + %(O(d) +T(2,d-1))

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:
T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

=0(d) + T(0,d) + %(O(d) +T(2,d-1))
<C(d+d+d*+df(d-1)max{1,1})

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:
T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

=0(d) +T(0,d) + %(O(d) +T(2,d-1))

<C(d+d+d*+df(d-1)max{1,1})
<CQBd*+df(d-1))

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:

T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

=0(d) +T(0,d) + %(O(d) +T(2,d-1))
<C(d+d+d*+df(d-1)max{1,1})
<CQBd*+df(d-1))

< Cf(d)max{l,1 -1}

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=1:

T(1,d)=0(d)+Tm-1,d) + %(O(dm) +T(m+1,d-1))

=0(d) +T(0,d) + %(O(d) +T(2,d-1))

<C(d+d+d*+df(d-1)max{1,1})
<CQBd*+df(d-1))
< Cf(d)max{l,1 -1}

if f(d)>df(d-1)+3d>.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:

T2,d)=0(d)+T(1,d) + g(O(Zd) +T@3,d-1))

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:

T2,d)=0(d)+T(1,d) + §(0(2d) +T(@3,d-1))
<=0(d) +[0(d)+T(0,d) +dO(d) +T(2,d—-1))]

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:
TR2,d)=0(d)+T1,d)+ §(0(2d) +T(3,d-1))
<0 +1[0d)+T0,d)+dOd)+T2,d-1))]
+g(2Cd+Cf(d—1)2)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:

T(2,d) =0O(d) + T(1,d) + %(O(Zd) +T(3,d-1))
<0(d) +[0(d) + T(0,d) + d(O(d) + T(2,d - 1))]
+ %(ZCd +Cf(d—-1)2)
<5Cd*+Cdf(d—-1)+Cf(d-1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:

T2,d)=0(d)+T(1,d) + %(0(2(1) +T@3,d-1))
<=0(d) +[0(d)+T(0,d) +dO(d) +T(2,d—-1))]
+ g(ZCd +Cf(d-1)2)

<5Cd*+Cdf(d—-1)+Cf(d-1)
< Cf(d)max{1,2 — 1}

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1m=2:

T(2,d) =0O(d) + T(1,d) + %(0(2(1) +T(3,d-1))
<0(d) + [0(d) + T(0,d) + d(O(d) + T(2,d - 1))]
+ %(2&1 +Cf(d-1)2)
<5Cd*+Cdf(d—-1)+Cf(d-1)
< Cf(d)max{1,2 — 1}

if f(d)=(d+1)f(d-1)+5d>.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

<0(d)+Cf(d)(m-2)+ %(Cdm+ Cf(d-1)m)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

<0d) +Cf(d)(m-2) + %(Cdm +Cf(d-1)m)
<2CA*+ Cf(d)(m-2)+Cdf(d-1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

<0(d)+Cf(d)(m-2)+ %(Cdm+ Cf(d-1)m)

<2CA*+ Cf(d)(m-2)+Cdf(d-1)
<Cf(d)(m-1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

<0d) +Cf(d)(m-2) + %(Cdm+ Cf(d-1)m)
<2CA*+ Cf(d)(m-2)+Cdf(d-1)
<Cf(d)(m-1)

< Cf(d)max{l,m — 1}

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

»d>1,m>2:

T(m,d)=0(d)+Tm-1,4) + %(O(dm) +T(m+1,d-1))

<0(d)+Cf(d)(m-2)+ %(Cdm+ Cf(d-1)m)

<2CA*+ Cf(d)(m-2)+Cdf(d-1)
<Cf(d)(m-1)
< Cf(d)max{l,m — 1}

if f(d)=df(d-1)+2d2.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.

EADS Il 5 Seidels LP-algorithm =] F =
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
f(a

EADS Il 5 Seidels LP-algorithm =] F =
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then

f(d) <5d>+ @+ 1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]
=5d2+(d+ 1) [5d-12+d[5(d-2)>+(d-1)f(d-3)]]

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]
=5d2+(d+ 1) [5d-12+d[5(d-2)>+(d-1)f(d-3)]]

=542 +5d+1)d-1)2+5(d+1)d(d-2)%+
+5(d+1)dd-1)-...-4-3-1%2

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]
=5d2+(d+ 1) [5d-12+d[5(d-2)>+(d-1)f(d-3)]]
=5d>+5(d+1)(d-1)2+5(d+1)d(d-2)%+
+5d+1)dd—-1)-...-4-3-12

az . d-1? d=2° 12
(d+1)! a (d-1)! (d—(d-2))

=50+ 1)!(

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]
=5d2+(d+ 1) [5d-12+d[5(d-2)>+(d-1)f(d-3)]]
=5d>+5(d+1)(d-1)2+5(d+1)d(d-2)%+

+5d+1Ddd-1)-...-4-3-12
B d? (d-1)2 (d-2)2 12
_5(d+1)!<(d+1)!+ dl +(d1)!+"'+(d(d2))!>
=0(d+1)
EADS II 5 Seidels LP-algorithm

(© Harald Racke

5 Seidels LP-algorithm

» Define f(1) =5-12and f(d) = (d+1)f(d - 1) +5d? ford > 1.
Then
fd) <5d>+d+1)f(d-1)
=5d2+(d+1)[5d-12+df(d-2)]
=5d2+(d+ 1) [5d-12+d[5(d-2)>+(d-1)f(d-3)]]
=5d>+5(d+1)(d-1)2+5(d+1)d(d-2)%+
+5d+1)dd—-1)-...-4-3-12

az . d-1? d=2° 12
(d+1)! a (d-1)! (d—(d-2))

=5(d + 1)! (
=0(d+ 1))

. i2 .
since X.;>1 7y IS @ constant.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Complexity

LP Decision Problem (LP decision)

» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x =0?

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Complexity

LP Decision Problem (LP decision)
» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x =0?

» Note that allowing A, b to contain rational numbers does not
make a difference...

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Complexity

LP Decision Problem (LP decision)
» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x =0?

» Note that allowing A, b to contain rational numbers does not
make a difference...

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Complexity

LP Decision Problem (LP decision)

» Given A € 7™*" b € Z™. Does there exist x € R with
Ax =b,x =0?

» Note that allowing A, b to contain rational numbers does not
make a difference...

Is this problem in NP or even in P?

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

The Bit Model

Input size

» The number of bits to represent a number a € Z is

[logr(lal + 1)1+ 1

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

The Bit Model

Input size

» The number of bits to represent a number a € Z is
[logr(lal + 1)1+ 1
» Let for a matrix M,

L(M) = > ([logy(Imyj + 1)1 + 1)
i

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

The Bit Model

Input size
» The number of bits to represent a number a € Z is

[logr(lal + 1)1+ 1

» Let for a matrix M,

L(M) = > ([Nogy (Imi; + 1)1+ 1)
ij
» In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in the input size L([A|b])).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Suppose that Ax = b; x = 0 is feasible.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Suppose that Ax = b; x = 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xp = Aﬁlb

and all other entries in x are 0.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Size of a Basic Feasible Solution

Lemma 19

Let A € 7ZM*™ be an invertable matrix and let b € Z™. Further
define L' = L([A | b]) + mlog, m. Then a solution to Ax = b has
rational components x j of the form %, where |D;| < 2L and
ID| < 2L,

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Size of a Basic Feasible Solution

Lemma 19

Let A € 7ZM*™ be an invertable matrix and let b € Z™. Further
define L' = L([A | b]) + mlog, m. Then a solution to Ax = b has
rational components x j of the form %, where |D;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

~ det(B;)
Xi T det(A)

where B; is the matrix obtained from A by replacing the j-th
column by the vector b.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)]

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)] > J] sen(maira)

TESH 1<i<m

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

Z 1_[sgn(Tr) Airm (i)

TESH 1<i<m

> I lainml

TESM 1<i<m

IA

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

Z 1_[sgn(Tr) Airm (i)

TESH 1<i<m

> I lainml

TESM 1<i<m
< m) - 2LUAIPD

IA

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

Z 1_[sgn(Tr) Airm (i)

TESH 1<i<m

> I lainml

TESM 1<i<m

< m! . 2LUAIPD < 4pymplL

IA

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

Z 1_[sgn(Tr) Airm (i)

TESH 1<i<m

> I lainml

TESM 1<i<m

< m! . 2LUAIPD < gyympl < DL

IA

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

Z 1_[sgn(Tr) Airm (i)

TESH 1<i<m

> I lainml

TESM 1<i<m

< m! . 2LUAIPD < gyympl < DL

IA

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Observe that

|det(A)|

> 11 sen(maina

TESH 1<i<m

> I lainml

TESM 1<i<m

< m! . 2LUAIPD < gyympl < DL

IA

Analogously for det(B;).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

|det(A)]

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

m
det(A)] < [] Al
i=1

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

ldet(A)| < [] 1Al < [[(vVmZ)

i=1 i=1

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

m m
ldet(A)| < [] 1Al < [[(vVmZ)
i=1 i=1
<mm/Zzm

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

m m
ldet(A)| < [] 1Al < [[(vVmZ)
i=1 i=1
< mm/ZZm < 2mL([A|b])+mlog2m

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

m m
ldet(A)| < [] 1Al < [[(vVmZ)
i=1 i=1
< mm/ZZm < 2mL([A|b])+mlog2m

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Bounding the Determinant

Since we only require a bound polynomial in the input length we

could also argue that the largest entry Z in the matrix is at most
oL([Alb])_

Then, Hadamards inequality gives

m m
ldet(A)| < [] 1Al < [[(vVmZ)
i=1 i=1
< mm/ZZm < 2mL([A|b])+mlog2m
which also gives an encoding length polynomial in the input
length L([A | b]).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Hadamards Inequality

Hadamards inequality says that the red volume is smaller than the

volume in the black cube (if |le1 |l = llaill, lle2ll = llazll,
llesll = llasll).
EADS Il 5 Seidels LP-algorithm

(© Harald Racke

EADS Il
(© Harald Racke

5 Seidels LP-algorithm

This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

EADS Il 5 Seidels LP-algorithm

(© Harald Racke

This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

EADS Il
(© Harald Racke

5 Seidels LP-algorithm

This means if Ax = b, x = 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

Hence, LP decision is in NP.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Reducing LP-solving to LP decision.

EADS II 5 Seidels LP-algorithm
(© Harald Racke

Reducing LP-solving to LP decision.

Given an LP max{ctx | Ax = b;x > 0} do a binary search for the
optimum solution

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Reducing LP-solving to LP decision.

Given an LP max{ctx | Ax = b;x > 0} do a binary search for the
optimum solution

(Add constraint —ctx + 8 = M; § = 0 or (ctx = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Reducing LP-solving to LP decision.

Given an LP max{ctx | Ax = b;x > 0} do a binary search for the
optimum solution

(Add constraint —ctx + 8 = M; § = 0 or (ctx = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22Ll ,
10g2 <W> =0(L") ,
as the range of the search is at most —n22L" ..., n22L" and the

_ : . 1 1
distance between two adjacent values is at least gy = 517

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Reducing LP-solving to LP decision.

Given an LP max{ctx | Ax = b;x > 0} do a binary search for the
optimum solution

(Add constraint —ctx + 8 = M; § = 0 or (ctx = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22Ll ,
10g2 <W> =0(L") ,
as the range of the search is at most —n22L" ..., n22L" and the

_ : . 1 1
distance between two adjacent values is at least gy = 517

Here we use L' = L([A | b | c]) + nlog, n (the input size plus
nlog, n).

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

How do we detect whether the LP is unbounded?

EADS II 5 Seidels LP-algorithm
(© Harald Racke

How do we detect whether the LP is unbounded?
Let Mpmax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

How do we detect whether the LP is unbounded?
Let Mpmax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint cfx > Mmax + 1 and check for feasibility.

EADS Il 5 Seidels LP-algorithm
(© Harald Racke

Ellipsoid Method

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

Ellipsoid Method

> Let K be a convex set.

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

Ellipsoid Method

> Let K be a convex set.

» Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

> Let K be a convex set.

» Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

» |If center z € K STOP.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

> Let K be a convex set.

» Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

» |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

>

| 4

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

>

| 4

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

>

| 4

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

Compute (smallest)
ellipsoid E’ that
contains K N H.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

> Let K be a convex set.

» Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

» |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Method

> Let K be a convex set.

» Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

» |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

» REPEAT

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 20
A mapping f : R" — R" with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 21
A ball in R™ with center ¢ and radius 7 is given by

B(c,7)={x|(x-¢c)(x—-c) <7?}

={x|D(x-0)32/r* <1}

B(0,1) is called the unit ball.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

EADS Il 6 The Ellipsoid Algorithm =] F
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

S (B(0,1))

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

SBO,1) ={f(x) | xeB(0,1)}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L Ny -t)€B(0,1)}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L Ny -t)€B(0,1)}

—{yeR" [(y-D'L VL (y-1) <1}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L Ny -t)€B(0,1)}
—{yeR" [(y-D'L VL (y-1) <1}
={yeR"| (y-'Q 1 (y—-t) <1}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Definition 22
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx +t follows x = L7} (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"|L Ny -t)€B(0,1)}

—{yeR" [(y-D'L VL (y-1) <1}
={yeR"| (y-'Q 1 (y—-t) <1}

where Q = LL! is an invertible matrix.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Lemma 23
Let L be an affine transformation and K < R"™. Then

vol(L(K)) = |det(L)|vol(K) .

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

n-dimensional volume

|d¢t(a1 az a3))
/ !
/

e

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

A}

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the transformation
function for the Ellipsoid) to rotate/distort the ellipsoid
(back) into the unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» The new center lies on axis x1. Hence, ¢’ = teg fort > 0.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» The new center lies on axis x1. Hence, ¢’ = teg fort > 0.
» The vectors e, e»,... have to fulﬁlll the ellipsoid constraint
with equality. Hence (e; — ¢)tQ’ " (e; — ¢') = 1.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» The ellipsoid E’ is axis-parallel.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» The ellipsoid E’ is axis-parallel.

» Let a denote the radius along the xj-axis and let b denote
the (common) radius for the other axes.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» The ellipsoid E’ is axis-parallel.

» Let a denote the radius along the xj-axis and let b denote
the (common) radius for the other axes.

» The matrix Q’_l is of the form

1
50 0
1
.1 0
Q =
0
0 0 4
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

> (e1 — 5')tQ'_1(e1 —¢') =1 gives

1-t\" (2 © 0
0 0 #
: 0
0 0 ... 0 47
» This gives (1 —)2 = a?.
EADS II 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

it A1 n .
» For i« 1 the equation (e; — ¢’)!Q’ (e; — ¢’) = 1 gives

t

! L0 .0 !
1
0 0 0 | =1
o
1
0 0 0 5 0
» This gives %+% 1, and hence
1 t2
2~ a2
EADS I

6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

it A1 n .
» For i« 1 the equation (e; — ¢’)!Q’ (e; — ¢’) = 1 gives

t

! L0 .0 !
1
0 0 0 | =1
: ' 0
) 1
0 0 ... 0 % 0
» This gives %+% 1, and hence
L T S
b2 a? (1-1)2
EADS I

6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

it A1 n .
» For i« 1 the equation (e; — ¢’)!Q’ (e; — ¢’) = 1 gives

t

! L0 .0 !
L

0 0 0 | =1

: ' 0

) 1

0 0 .. 0 % 0
» This gives %+% 1, and hence

1 _ﬁ_l_ t2 1-2t

b2 a? (1-6)2 (1-1t)2
EADS I

6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E') = vol(B(0,1)) - |det(L)] ,

where O’ = I''1".

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E') = vol(B(0,1)) - |det(L)] ,

where O’ = I''1".

» This gives
1
2 0 0 a 0 0
. 0o & . 0 b
R b and L' =
0 0
1
0 0 0 0O b
EADS 1l 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

vol(E")

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

l—t)Tl—l

=vol(B(0,1)) - (1 - t) - (1-2t

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

_ n-1
=vol(B(0,1)) - (1 —t) - (\/ll_itZt)
(1-t)"

= vol(B(0,1)) - JT=2pn-1

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

dvol(E)
dt

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

The Easy Case

dvol(E) d

dt t

(

a-o")
(V1 -=-2t)m1

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

The Easy Case

dvol(£) _ d (
dt = dt

%= \

1-on)

(VT=26)n-1

((D-nd-p" . (J1-20)"1!

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

The Easy Case

dt (VT —20)n1

dvol(F) d (1-t)"
- at (gi=sm)
=i ((1) -n(1-t)"1. 1-2t)n!

Z

_ _ _ 1’1.—2_ 1 s . _ n
(n-1)H1-2t) > T =7% (=2)-(1 t))

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

dt (+/1=2t)n"1

dvol(F) d (1-t)"
- at (gi=sm)
=i ((1) -n(1-t)"1. 1-2t)n!

Z

_ _ _ 1’1.—2_ 1 s . _ n
(n-1)H1-2t) > T =7% (=2)-(1 t))

1 " "
=m-(\/1—2t) .-t

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

dt (+/1=2t)n"1

dvol(F) d (1-t)"
- at (gi=sm)
=i ((1) -n(1-t)"1. 1-2t)n!

Z

_ _ _ 1’1.—2_ 1 s . _ n

(n—-1)W1-2t) N (-2)-(1 t))
1 " ne

=—N2-(\/1—2t) .-t

. ((n— DA-t) —n(- 2t)>

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

dt (+/1=2t)n"1

dvol(F) d (1-t)"
- at (gi=sm)
=i ((1) -n(1-t)"1. 1-2t)n!

Z

_ _ _ 1’1.—2_ 1 s . _ n
(n-1)W1-2t) > T =7% (=2)-(1-1))
1 " ne
=m-(\/1—2t) .-t
. ((n—l)(l—t)—n(l—Zt))

= % W1=2m 31—t ((n + 1)t - 1)

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=+v1-t

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n
n+1

a=+V1-t-=

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n
a=+V1-t-=
n+1

and b =

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t¢
a=v1-t= and b = ——
n+1 V1 =2t
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t¢ n
a=v1-t= and b = =
n+1 1-2t n2 -1
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let yn = #@:;)) = ab™"! be the ratio by which the volume
changes:
Yn
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let yn = #@:;)) = ab™"! be the ratio by which the volume
changes:
2 _
2 n 2 n n-1
Yn <n+ 1> <n2 — 1>
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let y, = #@:;)) = ab™"! be the ratio by which the volume
changes:
2 _
2 n 2 n n-1
Yn = <n+1> <n2—1>
1 2 n-1
=(1- 1+ ——
(n+1) ((n—l)(n+1))
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let y, = #@:;)) = ab™"! be the ratio by which the volume
changes:
2 _
2 n 2 n n-1
Yn = <n+1> <n2—1>
1 2 n-1
=(1- 1+
(n+1) ((n—l)(n+1))
I, 1
<e n+l «» gn+l
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let yn = #g;)) = ab™"! be the ratio by which the volume
changes:
2 _
2 n 2 n n-1
Yn = <n+1> <n2—1>
1 2 n-1
=(1- 1+
(n+1) ((n—l)(n+1))
I, 1
<e n+l «» gn+l
1
= e n+l
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let yn = #g;)) = ab™"! be the ratio by which the volume
changes:
2 _
2 n 2 n n-1
Yn = <n+1> <n2—1>
1 2 n-1
=(1- 1+
(n+1) ((n—l)(n+1))
I, 1
<e n+l «» gn+l
1
= e n+l
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Easy Case

Let yn = #@:;)) = ab™"! be the ratio by which the volume

changes:

n-1

where we used (1 + x)% < e?* for x € R and a > 0.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Easy Case

Let yn = #fo:i» = ab™"! be the ratio by which the volume

changes:

n-1

where we used (1 + x)% < e?* for x € R and a > 0.

1
This gives y, < e 201},

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

A}

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q’
for the original
ellipsoid E.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

__1
e 2+l

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

e

1

T 2(m+1)

vol(E")
~ vol(B(0,1))

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

1 vol(E') vol(E")

e 2+l > = =
vol(B(0,1)) vol(F)

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

L
e 2(n+1)

vol(E') vol(E') vol(R(E"))

~ vol(B(0,1)) ~ vol(E) vol(R(E))

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm =]

L
e 2(n+1)

vol(E') vol(E') vol(R(E"))

~ vol(B(0,1)) ~ vol(E) vol(R(E))
3 vol(E’)
~ vol(E)

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm =]

P vol(E") _ vol(E") _ vol(R(E"))
~ vol(B(0,1)) vol(E) vol(R(E))
_ vol(E') vol(f(E"))
~ vol(E) vol(f(E))
EADS Il 6 The Ellipsoid Algorithm =] =

(© Harald Racke

1 vol(E") B vol(E") B vol(R(E’))

e 2+ >

~ vol(B(0,1)) vol(E) vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")
~ vol(E) vol(f(E)) vol(E)

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the ellipsoid: f(x) = Lx + c;

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x — ¢) < 0};

FUH) = {fHx) lat(x —c) <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + ¢;
The halfspace: H = {x | at(x — ¢) < 0};

FUH) = {fHx) lat(x —c) <0}
={fYNfO) a'(f(y)) —c) <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + ¢;
The halfspace: H = {x | at(x — ¢) < 0};

FHH) = {f 1 (x) lal(x - ¢) =<0}

= NSO 1 at (f () —c) <0}
={y1a'(f(») —c) <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x — ¢) < 0};

FHH) = {f 1 (x) lal(x - ¢) =<0}
={f Yfo)N la(f(»y) —c) <0}
={yla'(f(») —c) <0}
={yla'Ly+c)-c) <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x — ¢) < 0};

FHH) = {f 1 (x) lal(x - ¢) =<0}
={f Yfo)N la(f(»y) —c) <0}
={yla'(f(») —c) <0}
={yla'Ly+c)-c) <0}
={y | (a'L)y <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x — ¢) < 0};

FHH) = {f 1 (x) lal(x - ¢) =<0}
={f Yfo)N la(f(»y) —c) <0}
={yla'(f(») —c) <0}
={yla'Ly+c)-c) <0}
={y | (a'L)y <0}

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the ellipsoid: f(x) = Lx + c;

The halfspace: H = {x | at(x — ¢) < 0};

FHH) = {f 1 (x) lal(x - ¢) =<0}
={f Yfo)N la(f(»y) —c) <0}
={yla'(f(») —c) <0}
={yla'Ly+c)-c) <0}
={y | (a'L)y <0}

This means a = Lta.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

.,/ Lta Lta
! ILtal) =

ILtall

—-e1 = - =

el

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

.,/ Lta Lta
! ILtal) =

ILtall

—-e1 = - =

el

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

,1(Lta>:_ _ La _
ILtall ILtall

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

The Ellipsoid Algorithm

1 Lta Lta
e
ILtall ILtall
Hence,
¢ =R-¢
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

,1(Lta) e Lta
= —€] —_—— =
ILtall ILtall
Hence,
1
~7 A~
C =R-¢ =
n+1 "
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

1 Lta Lta
() =—er = —& =R
ILtal| ILtal|
Hence,
1 1 Lta
-/ Al
¢ =R-C =R- ey = —
n+1 ' n+1|Ltal
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

1 Lta Lta
() =—er = —& =R
ILtal| ILtal|
Hence,
1 1 Lta
-/ Al
¢ =R-C =R- ey = —
n+1 ' n+1|Ltal
Cl
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

Lta Lta
-1
= —e1 ———— =R
(IILta||> ILtal|
Hence,
. 1 1 Lta
A = R . = 1 = —
+1 n+1|Ltall
Cl — f(c-/)
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

Lta Lta
-1
= —e1 —-— =R
(IILta||> ILtal|
Hence,
1 1 Lta
¢'=R-¢'=R- ey = —
n+1 ' n+1|Ltal
¢ =fc)=L-¢ +c
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

Lta Lta
-1
= —e1 —-— =R
(IILta||> ILtall
Hence,
1 1 Lta
¢'=R-¢'=R- ey = —
n+1 ' n+1|Ltal
¢ =fc)=L-¢ +c
1 Lta
 m+ 1 |Ltall
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

The Ellipsoid Algorithm

Lta Lta
-1
= —e1 ———— =R
(IILta||> ILtal|
Hence,
1 1 Lta
¢'=R-¢'=R- ey = —
n+1 ' n+1|Ltal
¢ =fc)=L-¢ +c
1 Lta
= - L +cC
n+1 | Ltal
1
=C - —- Qa
n+1 jatQa
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

For computing the matrix Q' of the new ellipsoid we assume in
the following that E’, E’ and E’ refer to the ellispoids centered in
the origin.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

For computing the matrix Q' of the new ellipsoid we assume in
the following that E’, E’ and E’ refer to the ellispoids centered in

the origin.

Note that

2
Ay n (2 t
= I- 1€)
Q=2 n+l !
EADS I 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

b

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' = R(E")
— (R(x) | xtO0" 'x <1}
=y (R Ry <1}

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' =R(E")
— (R(x) | xtO0" 'x <1}
- (V| R'MIQ TRy <1
-y 'RH QTR Yy < 1)

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' =R(E")
— (R(x) | xtO0" 'x <1}
- (V| R'MIQ TRy <1
= MRH QTR Yy <1
={y| (yt(ﬂ)*ly <1}
Bt

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Ql — RQ/Rt
2
n
-R. (1 - et
n2 -1 n+1 !
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q' = RQ'R'
2
_ n _ t\ . pt
_R.n2_1<1 n+lelel> R
2
__n t 2 t
= 7 (R-R' =~ (Re1)(Re)")
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q' = RQ'R'
2
_ n _ t\ . pt
_R.n2_1<1 n+lelel> R
2
__n t 2 t
= 7 (R-R' =~ (Re1)(Re)")
. n? (2 LtaatL)
T n2-1 n+1|Ltal?
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Ql _ RQ/Rt
2
n
=R (I — et
n2-1 n+l !
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q' =RQ'R!
2
n
=R- I- eret) - Rt
n2—1< n+1 ! 1>
2
n 2
= R-R'— ——(Rey)(Re1)!
1 - (Re1)(Re)")
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q' =RQ'R!
2
n
=R- I- et)-R?
n2—1< n+ 1% 1>
2
n 2
= R-R'— —"—(Rej)(Rey)t
1 - (Re1)(Re)")
. n? (2 LtaatL)
T n2-1 n+1|Ltal?
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q' =RQ'R!
2
n
=R- I- et)-R?
n2 -1 (n+ 1% 1>
2
n 2
= R-R'— —"—(Rej)(Rey)t
n2—1< n+1(81)(1))
. n? (2 LtaatL)
T n2-1 n+1|Ltal?
. n? (I— 2 LtaatL)
T n2-1 n+1 atQa
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' =L(E)
= {L(x) | x'Q 'x <1}
— @ T Ly < 1)

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' = L(E)
= {L(x) | xtQ 'x < 1}
—{y LQ Ly <13
=y 1 aH QL y < 1)

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

E' =L(E)
= {L(x) | xtQ 'x < 1}
=@M Ly <1y
=y taH QL y <13
={y| (yt(gﬁ)‘ly <1}
e

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q =LQ'L!
2 t At
n 2 L'aa'lL
-L- (-) It
nz -1 n+1 atQa
EADS 1l 6 The Ellipsoid Algorithm

(© Harald Racke

6 The Ellipsoid Algorithm

Hence,
Q =1Q'L!
2 t tL
_p.n < 2 L'aa)-Lt
nz -1 n+1 atQa
. n? (Q— 2 QaatQ>
S n2-1 n+1 atQa
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

Repeat: Size of basic solutions

Lemma 24
Let P = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be

the maximum encoding length of an entry in A. Then every entry

; . . . D; .
xi in a basic solution fulfills |x;| = 5 with
Dj,D < 22n<amax)+nlog2 n

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

Repeat: Size of basic solutions

Lemma 24
Let P = {x € R" | Ax < b} be a bounded polytop. Let {(amax) be

the maximum encoding length of an entry in A. Then every entry

; . . . D; .
xi in a basic solution fulfills |x;| = 5 with
Dj,D < 22n<amax)+nlog2 n

In the following we use § := 22™{@max)+nlogyn

EADS I 6 The Ellipsoid Algorithm

(© Harald Racke

Repeat: Size of basic solutions

Proof: Let A = (A| — A|l,,) Then the determinant of the matrices
Ag and B; can become at most

det(Ap) < H?maxﬂzn < 22n{amax)+nlog, n ’

where fmax is the longest column-vector that can be obtained
after deleting all but 272 rows and columns from A. This holds
because columns from I,, selected when going from A to Ag will
not increase the determinant. Only the at most 2n columns from
the matrices A and —A that A consists of will contribute.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < §.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?
For feasibility checking we can assume that the polytop P is
bounded.
In this case every entry x; in a basic solution fulfills |x;| < §.

Hence, P is contained in the cube -6 < x; < 6.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := ,/né from the
origin.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded.

In this case every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := ,/né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most (ndé)"B(0,1).

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

When can we terminate?

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

When can we terminate?

Let P:= {x | Ax < b} with A€ Zand b € Z be a bounded polytop.
Let (amax) be the encoding length of the largest entry in A or b.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

When can we terminate?

Let P:= {x | Ax < b} with A€ Zand b € Z be a bounded polytop.
Let (amax) be the encoding length of the largest entry in A or b.

Consider the following polytope
1
1.
Py = {xlesbJrA : })
1

where A = 6 + 1.

EADS II 6 The Ellipsoid Algorithm
(© Harald Racke

Lemma 25
P, is feasible if and only if P is feasible.

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

Lemma 25
P, is feasible if and only if P is feasible.

«<: obvious!

EADS Il 6 The Ellipsoid Algorithm
(© Harald Racke

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

=

Consider the polytops

and

P

p= {x | (A] = AllLp)x = b;x > o}

= {x 1l

1

;sz}.

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

=

Consider the polytops

pP= {x | (Al — Alln)x =b;x > O}

and
Pr={x | (Al - Allwx=b+ | |ix=0] .
1

P is feasible if and only if P is feasible, and P, feasible if and only
if P, feasible.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

=

Consider the polytops
pP= {x | (Al — Alln)x =b;x > O}

and

P;\={XI(A|—A|Im)x=b+% : ;sz}.
1

P is feasible if and only if P is feasible, and P, feasible if and only
if P, feasible.
Py is bounded since Py and P are bounded. Use A = (A| — A|I).

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

P, feasible implies that there is a basic feasible solution

represented by
1

xp =Aglb + %Agl
1

where A = (A| — A|Ln). (The other x-values are zero)

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

P, feasible implies that there is a basic feasible solution

represented by
1

xg=Ap'b + %Agl
1
where A = (A| — A|Ln). (The other x-values are zero)

The only reason that this basic feasible solution is not feasible for
P is that one of the basic variables becomes negative.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

P, feasible implies that there is a basic feasible solution
represented by
1

xg=Ap'b + %Agl
1

where A = (A| — A|Ln). (The other x-values are zero)

The only reason that this basic feasible solution is not feasible for
P is that one of the basic variables becomes negative.

Hence, there exists i with

_ - 1 - =
(Aglh); <0 < (Aglb); + X(Algll)i

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

But Cramers ruIe gives that (Aglb) < 0 implies that
(Ap'b); < ~ et t(A ; and (Az'1); < det(B;), where B, is obtained
by replacing the j-th column of Ap by b.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

But Cramers ruIe gives that (Aglb) < 0 implies that
(Ap'b); < ~ et t(A ; and (Az'1); < det(B;), where B, is obtained
by replacing the j-th column of Ap by b.

Then the determinant of the matrices Ag and Bj can become at
most 9.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

But Cramers ruIe gives that (Aglb) < 0 implies that
(Ap'b); < ~ et t(A ; and (Az'1); < det(B;), where B, is obtained
by replacing the j-th column of Ap by b.

Then the determinant of the matrices Ag and Bj can become at
most 9.

Since, we chose A = § + 1 this gives a contradiction.

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

Lemma 26
If Py is feasible then it contains a ball of radius v :=1/A = 1/(26).
This has a volume of at least ﬁ -vol(B(0,1)).

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

EADS Il
(© Harald Racke

6 The Ellipsoid Algorithm

How many iterations do we need until the volume becomes too
small?

EADS Il 6 The Ellipsoid Algorithm =] F =

(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0,R)) < vol(B(0,7))

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2+ . vol(B(0,R)) < vol(B(0,7))

Hence,

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0,R)) < vol(B(0,7))

Hence,
. vol(B(0,R))
i>2(n+ l)ln<vol(B(O,r))>
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0,R)) < vol(B(0,7))

Hence,
, vol(B(0,R))
i>2(n+ l)ln<vol(B(O,r))>
=2(n+1)In(n"s" - 2"5")
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0,R)) < vol(B(0,7))

Hence,
, vol(B(0,R))
i>2(n+ l)ln<vol(B(O,r))>
=2(n+1)In(n"s" - 2"5")
<2nIn(d) + nln(n)
EADS Il 6 The Ellipsoid Algorithm

(© Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0,R)) < vol(B(0,7))

Hence,

vmwm£»>
vol(B(0,7))
:mn+nmow&%2%ﬂ

<2nIn(d) + nln(n)

i>mn+nm(

< 4n°(amax) + 3n°log, (n)

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

Ellipsoid Algorithm

Input: point ¢ € R", radii R and 7, convex set K < R"
Output: point x € K

» check whether ¢ € K; if yes output ¢

» otherwise choose a violated hyperplane a;

o - 1 Qa
2 t
,on 2 Qaa'Q
Q T n? 1<Q n+1 atQa>

» if det(Q’) < /7" output fail
> repeat

EADS I 6 The Ellipsoid Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

1)

7 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

1)

7 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

1)

7 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

1)

7 Karmarkar’s Algorithm

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.
» Multiply ¢ by —1 and do a minimization. = minimization
problem

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

» Add a new variable pair xyp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xgp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex
Add —(3; x;)b; = —b; to every constraint. = vector b
becomes 0

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xgp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex

Add —(3; x;)b; = —b; to every constraint. = vector b
becomes 0

If A does not have full column rank we can delete constraints
(or conclude that the LP is infeasible). A has full row rank

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points
x0 =2 x1,x?,... with
k
ctxk < e snctx®

A point x is strictly feasible if x > 0.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points
x0 =2 x1,x?,... with

k
clxk <esmetx®

A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.

EADS 1l 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

EADS 1l 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible region.
Determine a distance to travel along this direction such that
you do not leave the simplex (and you do not touch the
border). X is the point you reached.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible region.
Determine a distance to travel along this direction such that
you do not leave the simplex (and you do not touch the
border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

4

X .

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define _
F Y-1x
v« X =
* etY-lx
EADS Il 7 Karmarkar’s Algorithm

(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define _—
Y 'x
Fy 1 x =
* etY-1x
The inverse function is
1 A Yx
F7lik - oo
etYx
EADS Il 7 Karmarkar’s Algorithm

(© Harald Racke

The Transformation

» Fg!really is the inverse of Fx.

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

» Fg!really is the inverse of Fx.

» X is mapped to e/n.

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

> F;l really is the inverse of Fx.
» X is mapped to e/n.
» A unit vectors e; is mapped to itself.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

\ 4

F;l really is the inverse of Fx.

» X is mapped to e/n.

v

A unit vectors e; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

After the transformation we have the problem

min{c!Fg(x) | AFz(x);x € A}

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

After the transformation we have the problem

clYx AYx A}

min{c'Fxz(x) | AFz(x);x € A} = mm{et}_’x | ST X

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

After the transformation we have the problem

clYx AYx A}

min{c'Fxz(x) | AFz(x);x € A} = mm{et}_’x | ST X

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

After the transformation we have the problem

ctyx | AYx
etYx

min{c!Fg(x) | AFz(x);x € A} = min{
Since the optimum solution is O this is the same as
min{étx | Ax = 0,x € A}

with ¢ = Yic = Yc and A = AY.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

e x
elYx’

e Al

7 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

b() = frem o] =0}

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

b() = frem o] =0}

We are looking for the largest radius + such that

B(%,T)m{xletle};&

EADS Il

7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

This holds for v = ||, —(e—e1);7l.

EADS Il
(© Harald Racke

7 Karmarkar’s Algorithm

7 Karmarkar’s Algorithm

This holds for v = [|£ — (e — e1) ;.

1

This gives v = \/ﬁ

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

This holds for v = [|£ — (e — e1) ;.

1

This gives v = \/ﬁ

Now we consider the problem

min{éix | Ax = 0,x € B(e/n,r) N A}

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

EADS II 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the ellipsoid).

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the ellipsoid).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the ellipsoid).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

0

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

7 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the ellipsoid).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

0

We use
P=1-BYBBY) 'B
Then
d=P¢
is the required projection.
EADS Il 7 Karmarkar’s Algorithm

(© Harald Racke

7 Karmarkar’s Algorithm

We get the new point

(o) =S4 pt
n ldll
for p <.
EADS 1l 7 Karmarkar’s Algorithm

(© Harald Racke

7 Karmarkar’s Algorithm

We get the new point

for p <.

Choose p = 3 < ar with & = 1/3.

EADS Il 7 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

1)

8 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

1)

8 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

1)

8 Karmarkar’s Algorithm

We want to solve the following linear program:
» minv = ctx subject to Ax = 0 and x € A.

» Here A={x e R" | elx =1,x = 0} with ef = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

1)

8 Karmarkar’s Algorithm

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.
» Multiply ¢ by —1 and do a minimization. = minimization
problem

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

» Add a new variable pair xyp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xgp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex
Add —(3; x;)b; = —b; to every constraint. = vector b
becomes 0

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Suppose you start with max{ctx | Ax < 0;x > 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase algorithm
(first optimizing a different feasible LP; if the solution is
non-zero the original LP is infeasible). Therefore, we can
assume that the LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xgp, xr’g (both restricted to be positive)
and the constraint >; x; = 1. = solution lies in simplex

Add —(3; x;)b; = —b; to every constraint. = vector b
becomes 0

If A does not have full column rank we can delete constraints
(or conclude that the LP is infeasible). A has full row rank

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points
x(=2 xW x2) with

Ctxk < 270(1)t,0

For k = ®(L). A point x is strictly feasible if x > 0.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

The algorithm computes (strictly) feasible interior points
x(=2 xW x2) with

ctxk < 2-0(L) o0
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible region.
Determine a distance to travel along this direction such that
you do not leave the simplex (and you do not touch the
border). X is the point you reached.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible region.
Determine a distance to travel along this direction such that
you do not leave the simplex (and you do not touch the
border). X is the point you reached.

3. Do a backtransformation to transform X into your new point

4

X .

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the
diagonal.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define _
F Y-1x
v« X =
* etY-lx
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define _—
Y 'x
Fy 1 x =
* etY-1x
The inverse function is
1 A Yx
F7lik - oo
etYx
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

The Transformation

Easy to check:

> F,;l really is the inverse of Fx.

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Easy to check:
> F,;l really is the inverse of Fx.

» X is mapped to e/n.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Easy to check:
> F,;l really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors e; is mapped to itself.

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

The Transformation

Easy to check:

v

F,;l really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors e; is mapped to itself.

v

All nodes of the simplex are mapped to the simplex.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

After the transformation we have the problem
min{c'Fz (x) | AF71(x);x € A}

This holds since the back-transformation “reaches” every point in
A (i.e. F71(A) = A).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

After the transformation we have the problem

o _

. tr—1 1 . _ . ctYx AYX
min{c ' F;" (x) | AF; (x);x € A} = mm{eth | eth’X S A}
This holds since the back-transformation “reaches” every point in
A (i.e. F71(A) = A).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

After the transformation we have the problem

o _

. tr—1 1 . _ . ctYx AYX
min{c ' F;" (x) | AF; (x);x € A} = mm{eth | eth’X S A}
This holds since the back-transformation “reaches” every point in
A (i.e. F71(A) = A).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

After the transformation we have the problem

o N
i RPN . (c'Yx AYx
min{c ' Fz" (x) | AFz" (x);x € A} _mln{et}_’x | etvx' A}

This holds since the back-transformation “reaches” every point in
A (i.e. F71(A) = A).

Since the optimum solution is O this problem is the same as
min{éfx | Ax = 0,x € A}

with ¢ = Ytc = Yc and A = AY.

EADS I
(© Harald Racke

8 Karmarkar’s Algorithm

8 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

b() = frem o] =0}

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

When computing X we do not want to leave the simplex or touch
its boundary.

For this we compute the radius of a ball that completely lies in the
simplex.

b() = frem o] =0}

We are looking for the largest radius + such that

B(%,T)m{xletle};&

EADS Il

8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

This holds for » = ||f — (e —e1) =7 ll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

This holds for » = ||f — (e —e1) =7 ll. (r is the distance between

the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

This gives v =

EADS Il

8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

This holds for » = ||f — (e —e1) =7 ll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives v =

min{éix | Ax = 0,x € B(e/n,r) N A}

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm

Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

8 Karmarkar’s Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints Ax = 0 or the
constraint x € A.

Therefore we first project ¢ on the nullspace of

We use
P=1-BYBBY) 'B
Then
d=P¢
is the required projection.
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

8 Karmarkar’s Algorithm

We get the new point

x(p) =— pi
n " dll
for p <.
EADS 1l 8 Karmarkar’s Algorithm

(© Harald Racke

8 Karmarkar’s Algorithm

We get the new point

x(p) =—- pi
n " dll
for p <.
Choose p = oxr with x = 1/4.
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

8 Karmarkar’s Algorithm

Iteration of Karmarkar’s algorithm:

» Current solution x. Y := diag(x1,...,Xn).
» Transform the problem via Fx(x) = ef;fx Let ¢ = Yc, and
A= AY.
» Compute
d=(I-BYBB") 'B)¢,
A
where B = .k
e
> Set
k=% _, 94
n Idall -’

with p = cxr with x=1/4andr = 1/yn(n - 1).

» Compute Xpew = Fgl(fc).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The Simplex

X3

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

Lemma 27
The new point X in the transformed space is the point that
minimizes the cost ¢tx among all feasible points in B(%, p).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0,elz=1,etx =1

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

B(x-z)=0.

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

B(x—-2z)=0
Further,
(¢ —-a)t
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

B(x—-2z)=0
Further,
(é-ad)t =(-pré)t
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

B(x—-2z)=0
Further,
(é-ad)t =(-pré)t
= (B'(BB") 'B¢)!
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

B(x-2)=0
Further,
(é-ad)t =(-pré)t
= (B'(BB") 'B¢)!
— AtBt(BBt)—lB
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have
B(x—-2z)=0.

Further,

(6 —d)t = (6 -Pé)t
= (B'(BB") 'B¢)!
— AtBt(BBt)—lB

Hence, we get

E-dtx-2)=0

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have
B(x—-2z)=0.

Further,

(6 —d)t = (6 -Pé)t
= (B'(BB") 'B¢)!
— AtBt(BBt)—lB

Hence, we get

E-dDt'x-2)=00rét(x-2z)=d'(x -2)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Proof: Let z be another feasible point in B(3, p).

As Az =0, AX =0, etz =1, etx = 1 we have

Further,

(6 —d)t = (6 -Pé)t
= (B'(BB") 'B¢)!
— ”tBt(BBt)—lB

Hence, we get
E-diX-2z)=0o0rét(Xx-2z)=dl(x - 2)

which means that the cost-difference between x and z is the same
measured w.r.t. the cost-vector ¢ or the projected cost-vector d.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

But
dt
liall

X—2z) =

dt

lall

(

i_piL_z>
n Uld]

EADS Il

(© Harald Racke

8 Karmarkar’s Algorithm

But

Il T

—Zz) =

dt

lidll

(=

lall |

dt

lidll

(=

)=

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

But

A e _dt(e_pd_z) _dt(e_z)_p<0
Il Il \n ~ 7 d] ldl \n

as % — z is a vector of length at most p.

EADS Il 8 Karmarkar’s Algorithm =] F =
(© Harald Racke

But

Aoy e,y
ldll dll \n ldll ldll
as % — z is a vector of length at most p.

(

This gives d(X — z) < 0 and therefore ¢x < ¢z.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

e
n

—z)—p<0

In order to measure the progress of the algorithm we introduce a
potential function f:

S(x)

EADS Il 8 Karmarkar’s Algorithm =] F =
(© Harald Racke

In order to measure the progress of the algorithm we introduce a
potential function f:

t
FO0 =I5
P

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to measure the progress of the algorithm we introduce a
potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to measure the progress of the algorithm we introduce a
potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to measure the progress of the algorithm we introduce a
potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -
J J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c!x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point z in the transformed space we use the potential
function

f(z)

EADS II 8 Karmarkar’s Algorithm = 5

(© Harald Racke

For a point z in the transformed space we use the potential
function

f(2) = f(Fz'(2))

EADS II 8 Karmarkar’s Algorithm = 5

(© Harald Racke

For a point z in the transformed space we use the potential
function

f(z):= f(Fz 1(2)—f(= f(Yz)

eth

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point z in the transformed space we use the potential
function

f(z):= f(Fz 1(2)—f(= f(Yz)

eth

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point z in the transformed space we use the potential
function

f(z):= f(Fz 1(Z)—f(= f(Yz)

etY

Zl (—)—Zlnxj

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point z in the transformed space we use the potential
function

f(2):= f(Fz l(z)_f(etY = f(Yz2)

Zl (—)—Zlnxj

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point z in the transformed space we use the potential
function

f(z):= f(Fz 1(Z)—f(= f(Yz)

etY

Zl (—)—Zlnxj

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by €.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f&) <f(=) -6,

e
n

where ¢ is a constant.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

f&) <f(=) -6,

e
n
where ¢ is a constant.

This gives
S (Xnew) < f(x) =6 .

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Lemma 28
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

P L e
f(Z)Sf(E)—(S

with 6 = In(1 +).

EADS Il 8 Karmarkar’s Algorithm =] F =

(© Harald Racke

Lemma 28
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

- ~oe
f(2) Sf(ﬁ) -0
with 6 = In(1 +).

Note that this shows the existence of a good point within the ball.
In general it will be difficult to find this point.

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

Let z* be the feasible point in the transformed space where ¢x is
minimized. (Note that in contrast X is the point in the intersection
of the feasible region and B(%,p) that minimizes this function; in
general z* + X)

EADS 1l 8 Karmarkar’s Algorithm
(© Harald Racke

Let z* be the feasible point in the transformed space where ¢x is
minimized. (Note that in contrast X is the point in the intersection
of the feasible region and B(%,p) that minimizes this function; in
general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Let z* be the feasible point in the transformed space where ¢x is
minimized. (Note that in contrast X is the point in the intersection
of the feasible region and B(%, p) that minimizes this function; in
general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from % to
z*, namely

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Let z* be the feasible point in the transformed space where ¢x is
minimized. (Note that in contrast X is the point in the intersection
of the feasible region and B(%, p) that minimizes this function; in
general z* + X)

z* must lie at the boundary of the simplex. This means
z* ¢ B(%,p).

The point z we want to use lies farthest in the direction from % to
z*, namely

z=(1-0< Az
n

for some positive A < 1.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Hence,

. e .
flz=01- A)ct; + Aétz*

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

Hence, 0
flz=(1- A)étﬁ + Aétz*

The optimum cost (at z*) is zero.

Therefore,
At €
¢ _ 1
ftz 1-A
EADS II 8 Karmarkar’s Algorithm

(© Harald Racke

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

The improvement in the potential function is

f(%) - f2)

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

The improvement in the potential function is

ate At
Cc c z
f(—)—f(z) —21n<) - In(=>)
n J J
EADS Il 8 Karmarkar’s Algorithm =

(© Harald Racke

The improvement in the potential function is

2 ¢tz
N)
i G

t

~ e c
feO-f f(z) = Zln(

j ﬁ
t
J
=> ln(G)
J n
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

The improvement in the potential function is

cty ¢tz

feO-f 2)—§1n(n —Zln(z)
t

—Zln(

e
n

_Al
ct l
n

::;;ln(if:ii

EADS Il

(© Harald Racke

8 Karmarkar’s Algorithm

The improvement in the potential function is

R Ate n
F&)-fe Zln(R Zhﬁﬁ
t J
= Zln(- T

= %ln(mzj)

- Zln(%((l —A)% +Az$))
J

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The improvement in the potential function is

~ Ate ~
FE) -7 Zln(Zlu(z
fte J
_ Zln(i n . T
= %ln(i1 —

_Eﬁmf§xu1—ml+Azﬂ)
J

=>1In(1+
J

*
_/\Zj)

EADS Il

(© Harald Racke

8 Karmarkar’s Algorithm

We can use the fact that for non-negative s;

>,;In(1 +5) = In(1 +3;5:)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We can use the fact that for non-negative s;

>,;In(1 +5) = In(1 +3;5:)

This gives

A e ~
f(ﬁ) —f(Z)

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

We can use the fact that for non-negative s;

>, In(1 +5;) = In(1 + 3;50)

This gives

na 2

~ e ~
fe) - 1@ = %111(1+ A%

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

This gives
FE) - fz)=Sma+ nA_ oy
n I 1-Aa/
nA
>1In(1 + T A)
EADS 1l 8 Karmarkar’s Algorithm

(© Harald Racke

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

In order to get further we need a bound on A:

Xr

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:

o =p

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:

ar =p =z —e/n|

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:

ar =p =llz—e¢/n| = A" —e/n)|

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:

ar =p =llz—¢/nl = [A(z* —¢/n)| < AR

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=\/(n-1)/n.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)

Then

A
1+n71_?\

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)
Then
n«
1+ >1+ —
"2 n-o-1
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)
Then
n«
> _— >
1+n1—?_1+n—0(—1 >1+«x
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)
Then
n«
> _— >
1+n1—?_1+n—0(—1 >1+«x
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

In order to get further we need a bound on A:
ar =p =|z—-e/n| =[|[A(z* —e¢/n)| <AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n.Sincer =1/./n-1)n we have R/r = n —1 and

A=>ax/(n-1)
Then A
no
> —_— >
1+n1—?_1+n—0(—1 >1+x
This gives the lemma.
EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Lemma 29
If we choose & = 1/4 and n > 4 in Karmarkar’s algorithm the
point X satisfies

f&) <f()-6

with 6 = 1/10.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Proof:

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

Proof:

Define

g(x) =

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

Proof:

Define
Al
X
g(x) =nln—-
C —_
n
EADS Il 8 Karmarkar’s Algorithm E

(© Harald Racke

Proof:

Define
At
Ctx
gx)=nln—_>
ote
n
~t ,\te
=n(né‘x —In¢*—) .
n
EADS Il

(© Harald Racke

8 Karmarkar’s Algorithm

Proof:

Define
At
Ctx
gx)=nln—_>
ote
n
~t ,\te
=n(né‘x —In¢*—) .
n
EADS Il

(© Harald Racke

8 Karmarkar’s Algorithm

Proof:
Define

Ctx
Ate
c n

nnétx —mnétly .
n

nln

g(x)

This is the change in the cost part of the potential function when
going from the center % to the point x in the transformed space.

EADS Il

8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

e

f(;) - f(®)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

~ e A N A e ~
f(ﬁ) - f(x) = [f(;) - f(2)]

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

FE) - F(&) = [f(%) - @)1

+[F(2) - (f(%) +9(2)]

3o

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on
~ e A N A e ~
f(ﬁ) - f(x) = [f(;) - f(2)]
+[f(2) - (f(%) +9(2)]
~) = (FC) +g(%))]

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

FE) - F0 =17 - 2]
+ 1@ = (F(5) +9(2))]
~) = (FC) +g(%))]
+1g9(z) —g(x)]

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

FE) - F0 =17 - 2]
+ 1@ = (F(5) +9(2))]
~) = (FC) +g(%))]
+1g9(z) —g(x)]

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We want to derive a lower bound on

FE - =1FC) - f2)]
+ 1@ = (F(5) +9(2))]
~) = (FC) +g(%))]
+1g9(z) —g(x)]

S

where z is the point in the ball where f achieves its minimum.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We have

[f(%) ~f@1=In1+

by the previous lemma.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

We have

[F(£) - f(2)]=In(+)

n
by the previous lemma.

We have
[9(z) —g(xX)]=0

since X is the point with minimum cost in the ball, and g is
monotonically increasing with cost.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point in the ball we have
Faw) = (F) +gw)) = Zl n
n

(The increase in penalty when going from % to w).

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point in the ball we have
A ~e
Fo) =7 G +gwn = =S n'
n
(The increase in penalty when going from % to w).

. . 2 .
This is at most 2(5773) with B = nar.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

For a point in the ball we have
A A e
fw) = (fC) +gw)) = ~>'In TJ
J n
(The increase in penalty when going from % to w).

- B2 . _
This is at most 20-8) with B = nar.
Hence,

A A 52
f(=) - f(x n(l + x) — a-p

S\N

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Lemma 30
For|x| <B<1

X2

|IIn(1 +x) — x| <

2(1-B)

EADS Il
(© Harald Racke

8 Karmarkar’s Algorithm

This gives for w € B(5, p)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

This gives for w € B(5, p)

I/n+(w; —1/n)

‘Zln

‘zl (1/n

1
- %n(wj -

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

This gives for w € B(

‘zlnl/n

EADS Il
(© Harald Racke

ZH

2

J

= pP)

I/n+(w; —1/n)

l/n

=nar<l

lln(l +n(w; —1/n))

8 Karmarkar’s Algorithm

1

-n(w; - —)

n

)—En(wj—i)|
J

|

This gives for w € B(5, p)

I/n+(w; —1/n)

- 1
- Zl (1/n)—%n(wj—n)|

‘zlnl/n

=nar<l 1
= > |In(1 + n(w; - 1/n)) - n(w; - =)

- n
J

n?(wj—1/n)?
= Z 2(1 — anr)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

This gives for w € B(5, p)

I/n+(w; —1/n)

- 1
- Zl (1/n)—%n(wj—n)|

‘zlnl/n

=nar<l 1
= > |In(1 + n(w; - 1/n)) - n(w; - =)

- n
J

n?(wj—1/n)?
= Z 2(1 — anr)

(onr)?
~ 2(1 - anr)

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

The decrease in potential is therefore at least

B
1-B

In(1 + x) —

with B = nar = o/

EADS II 8 Karmarkar’s Algorithm
(© Harald Racke

The decrease in potential is therefore at least

BZ
1-8

In(1 +) —

with B = nar = x\/;"7.

It can be shown that this is at least %0 form =4 and x =1/4.

EADS Il 8 Karmarkar’s Algorithm
(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
50 = €
n

EADS II 8 Karmarkar’s Algorithm = 5
(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
50 = €
n

Then f(x®)) < f(e/n) — k/10.

EADS Il 8 Karmarkar’s Algorithm = 5
(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives

t (k)
nlnc)tce < Zln)'cj(.k) — Zlnl —k/10

<nlnn-k/10

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives

t (k)
nlnc)tce < Zln)'cj(.k) — Zlnl —k/10

<nlnn-k/10

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
%0 = ¢
<.

Then f(x®)) < f(e/n) — k/10.
This gives

t (k)
nlnc)tce < Zln)'cj(.k) — Zlnl —k/10

<nlnn-k/10

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

(k)
nlnC)tCe <Zln'(k) zln%—k/lo
n J

< nlnn —k/10
Choosing k = 10n(£ + Inn) with £ = ©(L) we get

ctxk)

TSQ_{)SZ_#.
Cn

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

Let x*) be the current point after the k-th iteration, and let
2(0) _ e
X =

Then f(x®)) < f(e/n) — k/10.
This gives

(k)
nlnC)tCe <Zln'(k) zln%—k/lo
n J

< nlnn —k/10
Choosing k = 10n(£ + Inn) with £ = ©(L) we get

t & (k)
ctx
—ie < e_{) < 2_{} .
C'n
Hence, ©®(nL) iterations are sufficient. One iteration can be
performed in time O(n3).

EADS Il 8 Karmarkar’s Algorithm

(© Harald Racke

There are many practically important optimization problems that
are NP-hard.

EADS II 9 Introduction = 5 =
(© Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

EADS II 9 Introduction
(© Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

» Heuristics.

EADS II 9 Introduction
(© Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

» Exploit special structure of instances occurring in practise.

EADS II 9 Introduction
(© Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.
» Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

EADS II 9 Introduction
(© Harald Racke

Definition 31

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the

value of an optimal solution.

EADS II 9 Introduction
(© Harald Racke

Minimization Problem:

Let 7 denote the set of problem instances, and let for a given
instance I € 7, F(I) denote the set of feasible solutions. Further
let cost(F) denote the cost of a feasible solution F € F.

Let for an algorithm A and instance I € 7, A(I) € F(I) denote the
feasible solution computed by A. Then A is an approximation
algorithm with approximation guarantee « > 1 if

VI e T:cost(A(I)) < & - min {cost(F)} = « - OPT(I)
FeF)

EADS II 9 Introduction
(© Harald Racke

Maximization Problem:

Let 7 denote the set of problem instances, and let for a given
instance I € 7, F(I) denote the set of feasible solutions. Further
let profit(F) denote the profit of a feasible solution F € F.

Let for an algorithm A and instance I € 7, A(I) € F(I) denote the
feasible solution computed by A. Then A is an approximation
algorithm with approximation guarantee x < 1 if

VI €7 :cost(A(l)) = «- max {profit(F)} = & - OPT(I)
FeF ()

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

» It gives a rigorous mathematical base for studying heuristics.

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
» It gives a rigorous mathematical base for studying heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

EADS Il
(© Harald Racke

9 Introduction

Why approximation algorithms?

» We need algorithms for hard problems.
» It gives a rigorous mathematical base for studying heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
» It gives a rigorous mathematical base for studying heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
» It gives a rigorous mathematical base for studying heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

EADS II 9 Introduction
(© Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
» It gives a rigorous mathematical base for studying heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

» Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum solution
on every instance.

EADS II 9 Introduction
(© Harald Racke

What can we hope for?

EADS Il
(© Harald Racke

9 Introduction

What can we hope for?

Definition 32

A polynomial-time approximation scheme (PTAS) is a family of
algorithms {A¢}, such that A¢ is a (1 + €)-approximation
algorithms (for minimization problems) or a

(1 — €)-approximation algorithms (for maximization problems).

EADS II 9 Introduction
(© Harald Racke

What can we hope for?

Definition 32

A polynomial-time approximation scheme (PTAS) is a family of
algorithms {A¢}, such that A¢ is a (1 + €)-approximation
algorithms (for minimization problems) or a

(1 — €)-approximation algorithms (for maximization problems).

Many NP-complete problems have polynomial time approximation
schemes.

EADS II 9 Introduction
(© Harald Racke

There are difficult problems!

EADS Il 9 Introduction
(© Harald Racke

There are difficult problems!
The class MAX SNP (which we do not define) contains optimization
problems like maximum cut or maximum satisfiability.

EADS II 9 Introduction
(© Harald Racke

There are difficult problems!
The class MAX SNP (which we do not define) contains optimization
problems like maximum cut or maximum satisfiability.

Theorem 33
For any MAX SNP-hard problem, there does not exist a
polynomial-time approximation scheme, unless P = NP.

EADS II 9 Introduction
(© Harald Racke

There are really difficult problems!

EADS II 9 Introduction
(© Harald Racke

There are really difficult problems!

Theorem 34

For any constant € > 0 there does not exist an
Qn¢1)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

EADS II 9 Introduction
(© Harald Racke

There are really difficult problems!

Theorem 34

For any constant € > 0 there does not exist an
Qn¢1)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that a 1/n-approximation is trivial.

EADS II 9 Introduction
(© Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

EADS Il

10 Integer Programs
(© Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a vital
role in the design of many approximation algorithms.

EADS Il
(© Harald Racke

10 Integer Programs

Definition 35
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

EADS Il 10 Integer Programs
(© Harald Racke

Definition 35
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

Definition 36
A Mixed Integer Program is a Linear Program in which a subset of
the variables are required to be integral.

EADS I 10 Integer Programs
(© Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

EADS I 10 Integer Programs
(© Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is
NP-complete!

EADS I 10 Integer Programs
(© Harald Racke

Set Cover

Given a ground set U, a collection of subsets S1,...,Sy < U,
where the i-th subset S; has weight/cost w;. Find a collection
I<{1,...,k} such that

VueU3diel: ues; (every element is covered)
and

Z w; is minimized.
iel

EADS I 10 Integer Programs
(© Harald Racke

IP-Formulation of Set Cover

min D WiXi
s.t. VueU Xiyes, Xi >
Vie{l,...,k} X >
Vie{l,...,k} x; integral
EADS Il 10 Integer Programs

(© Harald Racke

IP-Formulation of Set Cover

min > WiXg
s.t. YueU Zi:uESi X
Vie{l,...,k} Xi

EADS Il 10 Integer Programs

(© Harald Racke

%

E

{0, 1}

Vertex Cover

Given a graph G = (V,E) and a weight w, for every node. Find a
vertex subset S = V of minimum weight such that every edge is
incident to at least one vertex in S.

EADS I 10 Integer Programs
(© Harald Racke

IP-Formulation of Vertex Cover

min 2vev WuXy
st. Ve=(i,j) €E Xi + Xj
Yv eV Xv
EADS I 10 Integer Programs

(© Harald Racke

=

E

1
{0,1}

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is
incident to more than one edge.

EADS I 10 Integer Programs
(© Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is
incident to more than one edge.

max 2.ecE Xe
st. YveV DopeceXe < 1
Ve e E x. € {0,1}
EADS Il 10 Integer Programs

(© Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

EADS I 10 Integer Programs
(© Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

max 2vev WuXy
s.t. Ve=(i,j) €E xXi+xj < 1
EADS I 10 Integer Programs

(© Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight w;
and profit p;, and given a threshold K. Find a subset

I < {1,...,n} of items of total weight at most K such that the
profit is maximized.

EADS I 10 Integer Programs
(© Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight w;
and profit p;, and given a threshold K. Find a subset

I < {1,...,n} of items of total weight at most K such that the
profit is maximized.

n
max 2i-1PiXi
s.t. 2?:1wixi < K
Vie{l,...,n} x; € {0,1}
EADS I 10 Integer Programs

(© Harald Racke

Facility Location

Given a set L of (possible) locations for placing facilities and a set
C of customers together with cost functions s : C x L - R* and
o:L — R" find a set of facility locations F together with an
assignment ¢ : C — F of customers to open facilities such that

> o(f)+ D s(c,p(c))

f€eF ¢
is minimized.
In the metric facility location problem we have

s(e, f) <s(e, f1) +s(c', f) +sc, f) .

EADS I 10 Integer Programs
(© Harald Racke

Relaxations

Definition 37
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

EADS I 10 Integer Programs

(© Harald Racke

Relaxations

Definition 37
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x;{0,1}.

EADS Il 10 Integer Programs
(© Harald Racke

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization
problem.

EADS I 10 Integer Programs
(© Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zi'(:l WiXi
s.t. VueU iyes;Xi = 1
Vie{l,..., k} x; € [0,1]
EADS Il 11.1 Deterministic Rounding

(© Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zi'(:l WiXi
s.t. VueU iyes;Xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {f,} be the maximum
frequency.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

EADS 1l 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that X5, X; = 1.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that X5, X; = 1.
» The sum contains at most f;, < f elements.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that X5, X; = 1.
» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

Lemma 38
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that > cs, X; > 1.

v

The sum contains at most f), < f elements.

v

Therefore one of the sets that contain u must have x; > 1/f.

v

This set will be selected. Hence, u is covered.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi< > wilf - xi)

iel i=1

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi< > wilf - xi)

iel i=1
= f - cost(x)

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi< > wilf - xi)

iel i=1
= f - cost(x)
<f-OPT.

EADS Il 11.1 Deterministic Rounding
(© Harald Racke

Technique 2: Rounding the Dual Solution.

EADS II 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

The dual of the LP-relaxation:

max Zuev Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0
EADS I 11.2 Rounding the Dual

(© Harald Racke

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

EADS I 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f-approximation.

EADS I 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 39
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

EADS Il 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

EADS Il 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

EADS Il 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 39
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

EADS I 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

iel

EADS Il 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:
Dwi=> > Yu
iel ieluues;
EADS I 11.2 Rounding the Dual

(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:
Dwi=2 > Yu
iel ieluues;
=D Hiel:uesil-yu
u
EADS I 11.2 Rounding the Dual

(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:
Dwi=2 > Yu
iel ieluues;
=Z|{ie[:u€5i}| “YVu
u
= Z Juvu
u
EADS I 11.2 Rounding the Dual

(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel ieluues;
=>Hiel:ueSi} - yu
u
= quyu
u

szyu

EADS I 11.2 Rounding the Dual
(© Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Dwi=2 > Yu
iel ieluues;
=>Hiel:ueSi} - yu
u
= quyu
u
szyu
u

< f-OPT

EADS I 11.2 Rounding the Dual
(© Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

Icr .

This means I’ is never better than I.

EADS I 11.2 Rounding the Dual
(© Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

EADS I 11.3 Primal Dual Technique
(© Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

EADS I 11.3 Primal Dual Technique
(© Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

Of course, we also need that I is a cover.

EADS I 11.3 Primal Dual Technique
(© Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains all sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.

EADS I 11.3 Primal Dual Technique
(© Harald Racke

Technique 3: The Primal Dual Method

Algorithm 4 PrimalDual
1. v <0
2210
3: while exists u ¢ J;c; S; do
4 increase dual variable y; until constraint for some
new set Sy becomes tight
5: I-1u{l}

EADS I 11.3 Primal Dual Technique
(© Harald Racke

Technique 4: The Greedy Algorithm

Algorithm 5 Greedy
1:1<0
2:Sj—S; forallj
3: while I not a set cover do
4: ¢ —argmin ¢ ., 5
5: I-1u{l}
6: Sj—S;j—S; forallj
EADS Il 11.4 Greedy

(© Harald Racke

Technique 4: The Greedy Algorithm

Lemma 40
Given positive numbers a1, ...,ay and by,..., by then
. aj ia
min - < 2.idi < =t
i b zi b; i b
EADS Il 11.4 Greedy

(© Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns;1 = 0 if we need s
iterations.

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns;1 = 0 if we need s
iterations.

In the £-th iteration

min —— <

i 1Sl my

wj OPT

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns;1 = 0 if we need s
iterations.

In the £-th iteration
. Wj OPT
min —— < —— .
i 1Sl my

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let S; be a subset that minimizes this ratio. Hence,

& OPT
wj/ISjl < ng -

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.

B IS;IOPT nyp—ny,y
ony ng

- OPT

wj

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

> wj

jel

EADS II 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

S wj < Z e~y gpr

jel ny

EADS Il 11.4 Greedy
(© Harald Racke

Technique 4: The Greedy Algorithm

> wj<
1 1
< OPT —
ﬂgl (n€ ’

jel

EADS I
(© Harald Racke

Z Ng —Nypyq . OPT
=1 ny

+
ny—1

11.4 Greedy

+7
Npyp +1

)

Technique 4: The Greedy Algorithm

ijsz e~y gpr
Jel =1 ne
> (1 1
50PTZ(+ ot
o\ ny—1
k1
=OPT > —
izll

EADS Il 11.4 Greedy

(© Harald Racke

1

Npyp +1

)

Technique 4: The Greedy Algorithm

S wj < Z e~y gpr
Jel =1 ne

N
sOPTZ(1+ L +---+1)

o\ ny—1 N +1

£
:OPTZ;

=H,-OPT<Inn+1.

EADS Il 11.4 Greedy
(© Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

EADS Il
(© Harald Racke

11.5 Randomized Rounding

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] a-x)

JuEeS;

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= [l O=xp =< J] e

JuEeS; Jues;

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
— —Xi
= [A-xp= [] e
JuEeS; j.uESJ

e_ Zj:uesj Xj

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
— —Xi
= [A-xp= [] e
JuEeS; j.uESJ

e_Zj:ueSij se_l .

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= [l O=xp =< J] e

JuEeS; Jues;

e_Zj:ueSij 58_1 .

Probability that u € U is not covered (after £ rounds):

Pr[u not covered after € round] < —

EADS Il 11.5 Randomized Rounding
(© Harald Racke

EADS Il
(© Harald Racke

11.5 Randomized Rounding

Pr[3u € U not covered after £ round]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Pr[3u € U not covered after £ round]

= Pr{u; not covered V uy not covered V ...V u, not covered]

EADS Il 11.5 Randomized Rounding =] F =
(© Harald Racke

Pr[3u € U not covered after £ round]
= Pr[u; not covered V u» not covered Vv

< ZPr[ui not covered after £ rounds]
i

EADS Il 11.5 Randomized Rounding
(© Harald Racke

...V Uy not covered]

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u> not covered Vv ...V u, not covered]
< ZPr[ui not covered after € rounds] < ne ! .
i

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u> not covered Vv ...V u, not covered]
< ZPr[ui not covered after € rounds] < ne ! .
i

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u> not covered Vv ...V u, not covered]
< ZPr[ui not covered after € rounds] < ne ! .
i

Lemma 41
With high probability © (logn) rounds suffice.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u> not covered Vv ...V u, not covered]
< ZPr[ui not covered after € rounds] < ne ! .
i

Lemma 41
With high probability © (logn) rounds suffice.

With high probability:
For any constant o the number of rounds is at most @ (logn) with
probability at least 1 — n~%,

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Proof: We have

Pr[#rounds > (« + 1) Inn] < ne-(¢rDinn —

n—O(

EADS II 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version A.
Repeat for s = (x + 1) Inn rounds. If you don’t have a cover
simply take all sets.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version A.

Repeat for s = (x + 1) Inn rounds. If you don’t have a cover
simply take all sets.

E[cost]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version A.

Repeat for s = (x + 1) Inn rounds. If you don’t have a cover
simply take all sets.

E[cost] < (x+1)Inn-cost(LP)+ (> wj)n~
J

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version A.

Repeat for s = (x + 1) Inn rounds. If you don’t have a cover
simply take all sets.

E[cost] < (x+1)Inn-cost(LP) + (D> w;)n~* = @(Inn) -OPT
J

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version A.

Repeat for s = (x + 1) Inn rounds. If you don’t have a cover
simply take all sets.

E[cost] < (x+1)Inn-cost(LP) + (D> w;)n~* = @(Inn) -OPT
J

If the weights are polynomially bounded (smallest weight is
1), sufficiently large @ and OPT at least 1.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

This means

E[cost | success]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

This means

E[cost | success]

1
= 7(E[cost] — Pr[no success] - E[cost | no success])
Pr[sucess]

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

This means

E[cost | success]

1
= 7(E[cost] — Pr[no success] - E[cost | no success])
Pr[sucess]

1
~ Pr[sucess]

A

E[cost] < #(a +1)Inn - cost(LP)
l—-n«

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

This means

E[cost | success]
1

= 7(E[cost] — Pr[no success] - E[cost | no success])
Pr[sucess]

1 1
<—F tlx ——(x+1)1 . t(LP
= Pr[sucess] [cost] 1- n—fx(a)Inmn - cost(LP)

<2(x+1)Inn - OPT

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Expected Cost

» Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | ho success]

This means

E[cost | success]
1

= 7(E[cost] — Pr[no success] - E[cost | no success])
Pr[sucess]

1 1
<—F tlx ——(x+1)1 . t(LP
= Pr[sucess] [cost] 1- n—fx(a)Inmn - cost(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Randomized rounding gives an @(logn) approximation. The
running time is polynomial with high probability.

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Randomized rounding gives an @(logn) approximation. The
running time is polynomial with high probability.

Theorem 42
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Techniques:
» Deterministic Rounding
» Rounding of the Dual
» Primal Dual
» Greedy
» Randomized Rounding
» Local Search

» Rounding the Data + Dynamic Programming

EADS Il 11.5 Randomized Rounding
(© Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X ;pj-x;; < L
Vjobs j Xixji=1
Vi, j xji € {0,1}

Here the variable x ; is the decision variable that describes
whether job j is assigned to machine 1.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
Jj, and let Chax be the makespan.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
Jj, and let Chax be the makespan.

Let CX.x denote the makespan of an optimal solution.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
Jj, and let Chax be the makespan.

Let CX.x denote the makespan of an optimal solution.

Clearly
Clax = Maxp;
J

as the longest job needs to be scheduled somewhere.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2iPj-

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2iPj-

Therefore,
1
Clax = —Mmaxp,;
max m J J
EADS Il 12 Scheduling on Identical Machines: Local Search

(© Harald Racke

Local Search

EADS Il
(© Harald Racke

12 Scheduling on Identical Machines: Local Search

Local Search

A local search algorithm successivley makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search

A local search algorithm successivley makes certain small

(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

EADS I
(© Harald Racke

12 Scheduling on Identical Machines: Local Search

Local Search

A local search algorithm successivley makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search for Scheduling

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move perform that
reduces the makespan perform the switch.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move perform that
reduces the makespan perform the switch.

REPEAT

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search Analysis

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produces schedule.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produces schedule.

Let Sy its start time, and let Cyp its completion time.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produces schedule.
Let Sy its start time, and let Cyp its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule would
not be locally optimal.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

EADS Il
(© Harald Racke

12 Scheduling on Identical Machines: Local Search

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

The interval [Sp, Cp] is of length py < C.«-

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

The interval [Sp, Cp] is of length py < C.«-

During the first interval [0, Sp] all jobs are busy, and, hence, the
total work performed in this interval is

m-Sp< > pj.
j#l

EADS Il

12 Scheduling on Identical Machines: Local Search
(© Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

The interval [Sp, Cp] is of length py < C.«-

During the first interval [0, Sp] all jobs are busy, and, hence, the
total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
pot > pj
m ¢

j#l

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

The interval [Sp, Cp] is of length py < C.«-

During the first interval [0, Sp] all jobs are busy, and, hence, the
total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

w+EZvJ=(1——)w+vaJ
j#l

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cp.

The interval [Sp, Cp] is of length py < C.«-

During the first interval [0, Sp] all jobs are busy, and, hence, the
total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
W+*Zv1=(1—*)ve+*2v1 (2 = —) Cinax
mj#g m

EADS Il 12 Scheduling on Identical Machines: Local Search
(© Harald Racke

A Greedy Strategy

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the
local optimally condition of our local search algorithm. Hence,
these also give 2-approximations.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

A Greedy Strategy

Lemma 43

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:

» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:
» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.
» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:
» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

» If pn < Clax/3 the previous analysis gives us a schedule

length of at most

Cr#r(lax tpe = 3

%
Cmax "

EADS 1l

13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:
» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

» If pn < Clax/3 the previous analysis gives us a schedule

length of at most

Cr#r(lax tpe = 3

%
Cmax "

EADS 1l

13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:

» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

» If pn < Clax/3 the previous analysis gives us a schedule
length of at most

4
CrTlax +py = §Cn*1ax .
Hence, pn > Ciax/3-

» This means that all jobs must have a processing time > CJ.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:

» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

» If pn < Clax/3 the previous analysis gives us a schedule
length of at most

4
CrTlax tpe = §Cn*1ax .

Hence, pn > Ciax/3-
» This means that all jobs must have a processing time > CJ.

» But then any machine in the optimum schedule can handle at
most two jobs.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Proof:

» Let p; = - - - = p, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n. (Otw. deleting this job gives
another counter-example with fewer jobs)

» If pn < Clax/3 the previous analysis gives us a schedule
length of at most

4
Crflax tpe = §Cr§ax .

Hence, pn > Ciax/3-
» This means that all jobs must have a processing time > CJ.

» But then any machine in the optimum schedule can handle at
most two jobs.

» For such instances Longest-Processing-Time-First is optimal.

EADS Il 13 Scheduling on Identical Machines: Greedy
(© Harald Racke

Traveling Salesman

Given a set of cities ({1,...,n}) and a symmetric matrix C = (c;;),
¢ij = 0 that specifies for every pair (i, j) € [n] x [n] the cost for
travelling from city i to city j. Find a permutation 71 of the cities
such that the round-trip cost

n-1
Cn()m(n) + z Crr(i)m(i+1)
i=1
is minimized.
EADS I 14 TSP

(© Harald Racke

Traveling Salesman

Theorem 44
There does not exist an O (2")-approximation algorithm for TSP.

EADS Il 14 TSP
(© Harald Racke

Traveling Salesman

Theorem 44

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

EADS Il

(© Harald Racke

14 TSP

Traveling Salesman
Theorem 44

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

EADS I
(© Harald Racke

14 TSP

Traveling Salesman

Theorem 44
There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

» If (i,j) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

EADS Il 14 TSP
(© Harald Racke

Traveling Salesman

Theorem 44
There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

» If (i,j) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

EADS I 14 TSP
(© Harald Racke

Traveling Salesman

Theorem 44
There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

» If (i,j) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

EADS Il 14 TSP
(© Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple i, j, k € {1,...,n}

Cij < Cij + Cjk -

EADS Il 14 TSP
(© Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple i, j, k € {1,...,n}
Cij < Cij + Cjk -
It is convenient to view the input as a complete undirected graph

G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.

EADS I 14 TSP
(© Harald Racke

TSP: Lower Bound |

Lemma 45

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTpysT(G) of a minimum spanning
tree in G.

EADS I 14 TSP
(© Harald Racke

TSP: Lower Bound |

Lemma 45

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTpysT(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.

EADS I 14 TSP
(© Harald Racke

TSP: Lower Bound |

Lemma 45

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTpysT(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.

» Delete one edge.

EADS I 14 TSP
(© Harald Racke

TSP: Lower Bound |

Lemma 45

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTpysT(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPTsp(G).

EADS II 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.

EADS I 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v; denote
the node added during the iteration.

EADS I 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v; denote
the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v; denote
the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v; denote
the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.
Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (sj,7i) in the tour by the two edges (si, Vi)
and (v, ;).

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

Lemma 46
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v; denote
the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.
Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (sj,7i) in the tour by the two edges (si, Vi)
and (v, ;).

This increases the cost by

Csivg T Cuyry = Copry = ZCSi,Ui

EADS Il 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

EADS I 14 TSP
(© Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,

> Csivi = OPTusT(G)

1

which with the previous lower bound gives a 2-approximation.

EADS I
(© Harald Racke

14 TSP

TSP: A different approach

EADS Il
(© Harald Racke

14 TSP

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

EADS Il 14 TSP
(© Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

EADS Il 14 TSP

(© Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G’.

EADS Il 14 TSP
(© Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G’.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

EADS Il 14 TSP
(© Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

EADS I 14 TSP
(© Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, j).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.
» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS I 14 TSP
(© Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTpsT(G).

EADS I 14 TSP
(© Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTpsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTusT(G) which means we have a 2-approximation.

EADS I 14 TSP
(© Harald Racke

TSP: Can we do better?

EADS Il
(© Harald Racke

14 TSP

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

EADS Il 14 TSP
(© Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

EADS Il 14 TSP
(© Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Matching between odd degree
vertices in the MST (note that there are an even number of them).

EADS Il 14 TSP
(© Harald Racke

TSP: Can we do better?

EADS Il
(© Harald Racke

14 TSP

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

EADS Il 14 TSP
(© Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

However, the edges of this tour give rise to two disjoint matchings.
One of these matchings must have weight less than OPTsp(G) /2.

EADS Il
(© Harald Racke

14 TSP

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

However, the edges of this tour give rise to two disjoint matchings.
One of these matchings must have weight less than OPTsp(G) /2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < §OPTTSP(G) ,

EADS Il 14 TSP
(© Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

However, the edges of this tour give rise to two disjoint matchings.
One of these matchings must have weight less than OPTsp(G) /2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < §OPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

EADS I 14 TSP
(© Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTrsp(G).

However, the edges of this tour give rise to two disjoint matchings.
One of these matchings must have weight less than OPTsp(G) /2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < §OPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.

EADS I 14 TSP
(© Harald Racke

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items {1,...,n}, where the i-th item has weight

w; € N and profit p; € N, and given a threshold W. Find a subset
I < {1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items {1,...,n}, where the i-th item has weight

w; € N and profit p; € N, and given a threshold W. Find a subset
I < {1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

max Sli1 PiXi
s.t. Z?:l wix; < W
Vie{l,...,n} x; € {0,1}
EADS Il 15.1 Knapsack

(© Harald Racke

15 Rounding Data + Dynamic Programming

Algorithm 6 Knapsack

1. A < [(0,0), (p1,w1)]

2: forJ<—2 to ndo

3 A(j) —A(G-1)

4 for each (p,w) € A(j—1) do
5: if w+wj; <W then
6

7

8:

add (p + pj,w +wj) to A(j)
remove dominated pairs from A(j)
return maxy w)cam) P

The running time is O(n - min{W, P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Definition 47

An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the
input is encoded in unary.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

» Let M be the maximum profit of an element.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

» Let M be the maximum profit of an element.

» Set u:=€eM/n.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

» Let M be the maximum profit of an element.
» Set u:=€eM/n.
» Set p; :=|pi/u] forall i.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

v

Let M be the maximum profit of an element.
Set u:=€eM/n.

v

v

Set p;:= | pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

v

Let M be the maximum profit of an element.
Set u:=€eM/n.

v

v

Set p;:= | pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP)

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

v

Let M be the maximum profit of an element.
Set u:=€eM/n.

v

v

Set p;:= | pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP’) =0(mn> p))

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

v

Let M be the maximum profit of an element.
Set u:=€eM/n.
Set p;:= | pi/u] forall i.

Run the dynamic programming algorithm on this revised
instance.

v

v

v

Running time is at most

O(nP') = O(an) = O(nZ[EM/n

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

v

Let M be the maximum profit of an element.
Set u:=€eM/n.

v

v

Set p;:= | pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

i 3
OmP') =0m Y p}) = O(nZLd\ZﬁJ) <o) .

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

2.

ieS

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D ZH D P

ieS ieS

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D ZH D P

ieS ieS

=12 P

i€e0

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

2. =H P
ieS ieS

=12 P
i€e0

> > pi— 10l
i€e0

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

2. =H P
ieS ieS
=p D P
i€e0
> > pi— 10l
ie0

> > pi—nu
ic0

Vv

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming
Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

2. ZH D P
ieS ieS
=12 P
i€c0
> > pi— 10l
ie0
> > pi—nu
ie0

= z pi — €M
ie0

Vv

EADS Il 15.1 Knapsack
(© Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

2. =H P
ieS ieS
=12 P
i€c0
> > pi— 10l
ie0
> > pi—nu
ie0
= > pi—-eM
ie0
(1 —¢€)OPT .

Vv

\%

EADS Il 15.1 Knapsack
(© Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

Together with the obervation that if each p; > %Cﬁ‘;ax then LPT is
optimal this gave a 4/3-approximation.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

1
Pjﬁazi:vi

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

1
Pjﬁazi:l?i

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

1
Pjﬁwzi:l?i

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,
always assigning the next job to the least loaded machine.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

We still have the inequality

1
— 2 pi+pe
j=l

where £ is the last job (this only requires that all machines are
busy before time Sp).

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

We still have the inequality
1 S p+
m - pPi+pe
j=l

where £ is the last job (this only requires that all machines are
busy before time Sp).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

We still have the inequality
1 S p+
m - pPi+pe
j=l

where £ is the last job (this only requires that all machines are
busy before time Sp).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

If £ is a short job its length is at most

pe <> pjl(mk)
J
which is at most C ../ k.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Hence we get a schedule of length at most

1

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Hence we get a schedule of length at most

1
(1+ E)C;;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
m*™ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

EADS Il

15.2 Scheduling Revisited
(© Harald Racke

Hence we get a schedule of length at most

1
(1 + E)Criax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
m*™ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 48

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [%].

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

How to get rid of the requirement that m is constant?

EADS II 15.2 Scheduling Revisited
(© Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 + ¢)T or
certifies that no schedule of length at most T exists (assume

T>*ijj)

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 + ¢)T or
certifies that no schedule of length at most T exists (assume

T>*ijj)

We partition the jobs into long jobs and short jobs:
» Ajobis long if its size is larger than T/k.
» Otw. it is a short job.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

» We round all long jobs down to multiples of T/k?.

EADS II 15.2 Scheduling Revisited =

(© Harald Racke

» We round all long jobs down to multiples of T/k?.

» For these rounded sizes we first find an optimal schedule.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

» We round all long jobs down to multiples of T/k?.
» For these rounded sizes we first find an optimal schedule.

» If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

EADS Il

15.2 Scheduling Revisited
(© Harald Racke

v

We round all long jobs down to multiples of T/k?2.

\ 4

For these rounded sizes we first find an optimal schedule.

v

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

\4

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.
their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.
their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at most

1

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the
new load is at most

T 1
T+ES(].+E)T

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Running Time: There should not be a job with rounded size
more than T as otw. the problem becomes trivial.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Running Time: There should not be a job with rounded size
more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of k—iZT forie {k,...,k%}.
Therefore the number of different inputs is at most nk?
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—iZT). This is polynomial.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Running Time: There should not be a job with rounded size
more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of k—iZT forie {k,...,k%}.
Therefore the number of different inputs is at most nk?
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—iZT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k% where the i-th entry describes
the number of jobs of rounded size k—lzT assigned x. There are

only (k + 1)K* different vectors.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Running Time: There should not be a job with rounded size
more than T as otw. the problem becomes trivial.

Hence, any job has rounded size of k—iZT forie {k,...,k%}.
Therefore the number of different inputs is at most nk?
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—iZT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k% where the i-th entry describes
the number of jobs of rounded size k—lzT assigned x. There are

only (k + 1)K* different vectors.
This means there are a constant number of different

configurations.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Let OPT(ny,...,ng2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Let OPT(ny,...,ng2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

If OPT(n1,...,ny2) < m we can schedule the input.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Let OPT(ny,...,ng2) be the number of machines that are required

to schedule input vector (n1,...,n2) with Makespan at most T.
If OPT(ny,...,ng2) < m we can schedule the input.
We have

OPT(nq,...,ng2)
{1+ min COPT(nl—sl,...,nkz—skz) (nq,..

0 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K’ n%* = (nk)¥*.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

.,nkz) 440

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/€.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/€.

Theorem 49
There is no FPTAS for problems that are strongly NP-hard.

EADS I
(© Harald Racke

15.2 Scheduling Revisited

Last Time

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (n,...,1n4) with Makespan at most T
(A: number of different sizes).

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Last Time

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (n,...,1n4) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Last Time

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (n,...,1n4) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

OPT(n4,...,n4)

0 (nli""nA):O
_ 1 1+ min OPT(n; —51,...,m4—54) Mq,...,714) =0
(51 y0eey sa)eC
00 otw.

where C is the set of all configurations.

|C| < (B + 1)#, where B is the number of jobs that possibly can fit on
the same machine.

EADS Il 15.2 Scheduling Revisited
(© Harald Racke

Bin Packing

Given n items with sizes sy,..., S, where
1>s51=2---=25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Given n items with sizes sy,..., S, where
1>s51=2---=25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 50
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Proof

» In the partition problem we are given positive integers
by,...,by with B = ; b; even. Can we partition the integers
into two sets S and T s.t.

>bi=> b; ?

ieS ieT

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Proof
» In the partition problem we are given positive integers
by,...,by with B = ; b; even. Can we partition the integers

into two sets S and T s.t.

>bi=> b; ?

ieS ieT

» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

EADS Il 15.3 Bin Packing
(© Harald Racke

Bin Packing

Proof

» In the partition problem we are given positive integers
by,...,by with B = ; b; even. Can we partition the integers
into two sets S and T s.t.

>bi=> b; ?
ieS ieT
» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Proof

» In the partition problem we are given positive integers
by,...,by with B = ; b; even. Can we partition the integers
into two sets S and T s.t.

>bi=> b; ?
ieS ieT
» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Definition 51

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A¢
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

EADS Il 15.3 Bin Packing
(© Harald Racke

Bin Packing

Definition 51

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A¢
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

» Note that for set cover or for knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Definition 51

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A¢
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

» Note that for set cover or for knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

» However, we will develop an APTAS for Bin Packing.

EADS Il 15.3 Bin Packing
(© Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 52

Any packing of items of size at most y into £ bins can be extended
to a packing of all items into max{¥, %SIZE(I) + 1} bins, where
SIZE(I) = >.; s; is the sum of all item sizes.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 52

Any packing of items of size at most y into £ bins can be extended
to a packing of all items into max{¥, %SIZE(I) + 1} bins, where
SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins all bins (apart from
the last) must be full to at least 1 — y.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 52

Any packing of items of size at most y into £ bins can be extended
to a packing of all items into max{¥, %SIZE(I) + 1} bins, where
SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 52

Any packing of items of size at most y into £ bins can be extended
to a packing of all items into max{¥, %SIZE(I) + 1} bins, where

SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

EADS I 15.3 Bin Packing
(© Harald Racke

Choose y = €/2. Then we either use £ bins or at most
1/(1 —€/2)OPT+1 < (1+4+¢€)OPT +1
bins.

It remains to find an algorithm for the large items.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

» Let the first k items belong to group 1; the following k items
belong to group 2; etc.

EADS Il 15.3 Bin Packing
(© Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

» Let the first k items belong to group 1; the following k items
belong to group 2; etc.

» Delete items in the first group;

EADS I 15.3 Bin Packing
(© Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

» Let the first k items belong to group 1; the following k items
belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 53
OPT(I') < OPT() <OPT{I') + k

EADS Il 15.3 Bin Packing
(© Harald Racke

Lemma 53
OPT(I') < OPT() <OPT{') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

EADS Il 15.3 Bin Packing
(© Harald Racke

Lemma 53
OPT(I') < OPT() <OPT{') + k

Proof 1:
» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 53
OPT(I') < OPT() <OPT{') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 53
OPT(I') < OPT() <OPT{') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 54
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:

» Any bin packing for I’ gives a bin packing for I as follows.

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 54
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

EADS Il 15.3 Bin Packing
(© Harald Racke

Lemma 54
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
itemsfor group 2 have been packed;

EADS I 15.3 Bin Packing
(© Harald Racke

Lemma 54
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
itemsfor group 2 have been packed;

EADS Il 15.3 Bin Packing
(© Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

EADS I 15.3 Bin Packing
(© Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = [eSIZE(]) |.

EADS II 15.3 Bin Packing
(© Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = [eSIZE(]) |.

Then n/k < 2n/(eSIZE(I)) < 4/€? (here we used | x| > /2 for
= 1).

EADS II 15.3 Bin Packing
(© Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = [eSIZE(]) |.

Then n/k < 2n/(eSIZE(I)) < 4/€? (here we used | x| > /2 for
= 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/€) can fit into any bin.

EADS II 15.3 Bin Packing
(© Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = [eSIZE(]) |.

Then n/k < 2n/(eSIZE(I)) < 4/€? (here we used | x| > /2 for
= 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/€) can fit into any bin.

We can find an optimal packing for such instances by the previous
Dynamic Programming approach. This gives a
(1 + €)-approximation because of the choice of k.

EADS 1l 15.3 Bin Packing
(© Harald Racke

Can we do better?

EADS Il
(© Harald Racke

16 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + O(log®(SIZE(I))) .

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + O(log®(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+¢€)OPT() +1 .

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

Change of Notation:

» Group pieces of identical size.

EADS II 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

» Let 51 denote the largest size, and let by denote the number
of pieces of size s;.

EADS 1l 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

» Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
» s> is second largest size and b, number of pieces of size sp;

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.
» Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
» s> is second largest size and b, number of pieces of size sp;

> LR

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

Change of Notation:

>

>

Group pieces of identical size.

Let s; denote the largest size, and let b; denote the number
of pieces of size s;.

$» is second largest size and b> number of pieces of size s;

Sm smallest size and b,, number of pieces of size s;,.

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,
Z ti-si<1.
i
EADS Il 16 Advanced Rounding for Bin Packing

(© Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-SiSI.
i

We call a vector that fulfills the above constraint a configuration.

EADS Il 16 Advanced Rounding for Bin Packing
(© Harald Racke

Configuration LP

EADS Il
(© Harald Racke

16.1 Configuration LP

Configuration LP

Let N be the number of configurations (exponential).

EADS Il 16.1 Configuration LP
(© Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let Ty,..., Ty be the sequence of all possible configurations (a
configuration T; has Tj; pieces of size s;).

EADS Il 16.1 Configuration LP
(© Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let Ty,..., Ty be the sequence of all possible configurations (a
configuration T; has Tj; pieces of size s;).

min Z?lej

st. Vie{l...m} Z?f:lTjixj > b;
Vje{l,...,N} X > 0
Vje{l,...,N} x; integral

EADS Il 16.1 Configuration LP
(© Harald Racke

How to solve this LP?

later...

EADS Il
(© Harald Racke

16.1 Configuration LP

We can assume that each item has size at least 1/SIZE(I).

EADS Il 16.1 Configuration LP o
(© Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new
group.

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new

group.

> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for Go,...,Gy_1.

EADS Il 16.1 Configuration LP

(© Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new
group.

> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for Go,...,Gy_1.

» Only the size of items in the last group G, may sum up to
less than 2.

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G and G,..

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G and G,..

» For groups Go2,...,G,_1 delete n; — n;_; items.

EADS Il 16.1 Configuration LP
(© Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G and G,..
» For groups Go2,...,G,_1 delete n; — n;_; items.

» Observe that n; > n;_1.

EADS Il 16.1 Configuration LP
(© Harald Racke

Lemma 55
The number of different sizes in I’ is at most SIZE(I) /2.

EADS Il 16.1 Configuration LP o
(© Harald Racke

Lemma 55
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

EADS Il 16.1 Configuration LP
(© Harald Racke

Lemma 55
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I) /2.

EADS Il 16.1 Configuration LP
(© Harald Racke

Lemma 55
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I) /2.

» All items in a group have the same size in I'.

EADS Il 16.1 Configuration LP
(© Harald Racke

Lemma 56
The total size of deleted items is at most O (log(SIZE(I))).

EADS Il 16.1 Configuration LP o
(© Harald Racke

Lemma 56
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G and G, is at most 6 as a group
has total size at most 3.

EADS 1l 16.1 Configuration LP
(© Harald Racke

Lemma 56
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G and G, is at most 6 as a group
has total size at most 3.
» Consider a group G; that has strictly more items than G;_;.

EADS 1l 16.1 Configuration LP
(© Harald Racke

Lemma 56
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.
» It discards n; — n;_; pieces of total size at most

n; — n; L
3 i i—1 < Z ’
i J=ni-1+1 J

since the smallest piece has size at most 3/n;.

EADS I
(© Harald Racke

16.1 Configuration LP

Lemma 56
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G and G, is at most 6 as a group
has total size at most 3.
» Consider a group G; that has strictly more items than G;_;.
» It discards n; — n;_; pieces of total size at most
PR . nl
31’11 Nni—1 < Z §
ni J
since the smallest piece has size at most 3/n;.
» Summing over all i that have n; > n;_; gives a bound of at
most

J=ni1+1

Ny-1 3

> = < O0(og(SIZE(D))) .

=17

(note that n, < SIZE(I) since we assume that the size of each
item is at least 1/SIZE(I)).

EADS 1l 16.1 Configuration LP
(© Harald Racke

Algorithm 7 BinPack

: if SIZE(I) < 10 then

pack remaining items greedily

: Apply harmonic grouping to create instance I’; pack

discarded items in at most O (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack |x;] bins in configuration T; for all j; call the
packed instance I;.

6: Let Io be remaining pieces from I’

7: Pack I» via BinPack(I>)

w N =

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

OPTyp(I7) + OPTip(I2) < OPTip(I') < OPT1p(I)

EADS Il 16.1 Configuration LP o
(© Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTp(I’') < OPTip(I)

EADS 1l 16.1 Configuration LP
(© Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTp(I’') < OPTip(I)

» |x;j] is feasible solution for I; (even integral).

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTp(I’') < OPTip(I)

» |x;j] is feasible solution for I; (even integral).

» xj— |x;]|is feasible solution for I5.

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

2. Pieces scheduled because they are in I.

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I are handed down to the next level.

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPT1p many bins.

EADS 1l 16.1 Configuration LP
(© Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPT1p many bins.

Pieces of type 1 are packed into at most
O(og(SIZE(I))) - L

many bins where L is the number of recursion levels.

EADS 1l 16.1 Configuration LP
(© Harald Racke

Analysis

We can show that size(I>) < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Iorigina1))) in total.

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

We can show that size(I>) < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Iorigina1))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

EADS Il 16.1 Configuration LP
(© Harald Racke

Analysis

We can show that size(I>) < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Iorigina1))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

» The total size of items in I> can be at most 2?1:1 xj—1xjl
which is at most the number of non-zero entries in the
solution to the configuration LP.

EADS Il 16.1 Configuration LP
(© Harald Racke

17 MAXSAT

Problem definition:

» n Boolean variables

EADS Il
(© Harald Racke

17 MAXSAT

17 MAXSAT

Problem definition:
» n Boolean variables

» m clauses Cy,...,Cpy. For example

C7 = X3V X5V Xg

EADS I 17 MAXSAT
(© Harald Racke

17 MAXSAT

Problem definition:
» n Boolean variables

» m clauses Cy,...,Cpy. For example
C7 = X3V X5V Xg

» Non-negative weight w; for each clause C;.

EADS I 17 MAXSAT
(© Harald Racke

17 MAXSAT

Problem definition:
» n Boolean variables

» m clauses Cy,...,Cpy. For example
C7 = X3V X5V Xg

» Non-negative weight w; for each clause C;.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.

EADS Il 17 MAXSAT
(© Harald Racke

17 MAXSAT

Terminology:

» A variable x; and its negation x; are called literals.

EADS I 17 MAXSAT
(© Harald Racke

17 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; V X; is not a clause).

EADS I 17 MAXSAT
(© Harald Racke

17 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.
» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; V X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

EADS Il 17 MAXSAT
(© Harald Racke

17 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; V X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

EADS I 17 MAXSAT
(© Harald Racke

17 MAXSAT

Terminology:

| 4

>

A variable x; and its negation X; are called literals.

Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; V X; is not a clause).

We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with ¢;.

EADS Il 17 MAXSAT

(© Harald Racke

17 MAXSAT

Terminology:

| 4

>

A variable x; and its negation X; are called literals.

Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; V X; is not a clause).

We assume a clause does not contain x; and Xx; for any i.

x; is called a positive literal while the negation x; is called a
negative literal.

For a given clause C; the number of its literals is called its
length or size and denoted with ¢;.

Clauses of length one are called unit clauses.

EADS I 17 MAXSAT
(© Harald Racke

MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).

EADS I 17 MAXSAT
(© Harald Racke

Define random variable X with

1 if C; satisfied
X =
0 otw.
EADS 1I 17 MAXSAT

(© Harald Racke

Define random variable X; with

X =
J 0 otw.

{ 1 if Cj satisfied
Then the total weight W of satisfied clauses is given by

W = Z'LUJ'XJ'
J

EADS Il 17 MAXSAT
(© Harald Racke

EADS Il
(© Harald Racke

17 MAXSAT

E[W] = ZWJ'E[XJ']

EADS Il
(© Harald Racke

17 MAXSAT

E[W] = ijE[Xj]
J
= ijPr[Cj is satisified]
J

EADS Il
(© Harald Racke

17 MAXSAT

E[W]=> wjE[X/]
J
= ijPr[Cj is satisified]
J

= S w1 - ()
J

EADS II
(© Harald Racke

17 MAXSAT

E[W] = ijE[Xj]

J
= ijPr[Cj is satisified]
J
1.y,
= Dwi(l-(3)")
J
1

EADS Il
(© Harald Racke

17 MAXSAT

E[W]=> wjE[X/]
J
= ijPr[Cj is satisified]
J

= S w1 - ()
J
1
=52
J

1
> OPT

I\

EADS Il
(© Harald Racke

17 MAXSAT

MAXSAT: LP formulation

» Let for a clause Cj, P; be the set of positive literals and N;;
the set of negative literals.

Cj= \/XiV \/)-Ci

jEPJ' jENJ'

EADS I 17 MAXSAT
(© Harald Racke

MAXSAT: LP formulation

» Let for a clause Cj, P; be the set of positive literals and N;;
the set of negative literals.

Cj= \/XiV \/)-Ci

jEPJ' jENJ'

EADS I 17 MAXSAT
(© Harald Racke

MAXSAT: LP formulation

» Let for a clause Cj, P; be the set of positive literals and N;;
the set of negative literals.

Cj= \/XiV \/)-(i

jEPJ' jENJ'
max 2 WiZj
sit. Vj Dlep; Vit 2ien;(1-2i) = z;
Vi yi € {0,1}
Vj zZj = 1
EADS I 17 MAXSAT

(© Harald Racke

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and, hence,
to false with probability (1 — y;)).

EADS I 17 MAXSAT
(© Harald Racke

Lemma 57 (Geometric Mean < Arithmetic Mean)

For any nonnegative a,...,ax
k 17k k
1
[Tai <% > ai
i=1 i=1
EADS Il 17 MAXSAT =

(© Harald Racke

Lemma 58
Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) =a+ b. Then f(x) = bx + a for x € [0, 1].

EADS I 17 MAXSAT
(© Harald Racke

Pr[C; not satisfied]

EADS Il
(© Harald Racke

17 MAXSAT

Pr[C; not satisfied] = [[(1 —) [] i

IEPJ' lENJ'

EADS Il 17 MAXSAT
(© Harald Racke

Pr[C; not satisfied]

[Ta-»o [T

lEPj lGNJ'

1
7 DA-y)+ > yi

J i€P; iEN;

EADS Il
(© Harald Racke

17 MAXSAT

Pr[C; not satisfied]

[Ta-»o [T

iEPJ' iENJ'
— 4
1
=\ 7 > A=y + > v
|/ \icp; ieN;
r 4
= 1—— > yvit > (-
L J i€P; 1EN;
EADS Il 17 MAXSAT

(© Harald Racke

Pr[C; not satisfied]

[Ta-»o [T

iEPJ' iENJ'
— 4
1

=\ 7 > A=y + > v

|/ \icp; ieN;

— y].
= 1—— > yvit > (-

L i€P; 1EN;

IA
/-~

—_

|

t‘%‘ N
.
N————
)

EADS I 17 MAXSAT
(© Harald Racke

The function f(z) =1 - (1 — %)3 is concave. Hence,

Pr[C; satisfied]

EADS Il 17 MAXSAT
(© Harald Racke

The function f(z) =1 - (1 — %)3 is concave. Hence,

AN\
Pr[C; satisfied] > 1 — (_ ZJ)
¢

EADS Il 17 MAXSAT
(© Harald Racke

The function f(z) =1 - (1 — %)3 is concave. Hence,

AN\
Pr[C; satisfied] > 1 — (_ ZJ)
¢

[1-0-8)") .

EADS Il 17 MAXSAT
(© Harald Racke

E[W]

EADS Il
(© Harald Racke

17 MAXSAT

E[W] = > w;Pr[C; is satisfied]
J

EADS Il
(© Harald Racke

17 MAXSAT

E[W] = > w;Pr[C; is satisfied]
J

> %wjzj [1 — (1 - ;j)%}

EADS Il
(© Harald Racke

17 MAXSAT

E[W] = > w;Pr[C; is satisfied]

J
ZZ‘LUJ'ZJ' |:1— (1—
J
> (1—1)OPT .
e

1

4

)]

EADS Il
(© Harald Racke

17 MAXSAT

MAXSAT: The better of two

Theorem 59

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.

EADS Il 17 MAXSAT
(© Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2}1]

EADS I 17 MAXSAT
(© Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2}] = E[%Wl ; %Wz]

EADS I 17 MAXSAT
(© Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2}] = E[%Wl ; %Wz]

1 1\% 1
izmao-o-4) g

J

EADS Il 17 MAXSAT
(© Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2}] = E[%Wl + L

2
0:
1 1\"’ 1
J J J
0
1 1\"’ 1
=D wizj| 5 (1—(1—%))+2(1_2€J)
J
.3
Z7
EADS II 17 MAXSAT

(© Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2}] = E[%Wl ; %Wz]

1 1\ 1
bl S 11-(1=-—= - (1 — 2
> JE w;z;j [1 (1 1%’) } +5 JE w;(1—2777)

\%

L
1 1)7) 1

> Y wizi| - 1—(1—) +-(1-274

1 2(b) 2 ()
.3
=4

3

> JOPT

!

EADS I 17 MAXSAT

(© Harald Racke

0.9 \
0.8

|

S

ARN

v/

0.5

flipping coins

average

randomized rounding

EADS Il
(© Harald Racke

17 MAXSAT

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

EADS Il 17 MAXSAT

(© Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(y;).

EADS I 17 MAXSAT
(© Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <41

EADS I 17 MAXSAT
(© Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <41

Theorem 60

Rounding the LP-solution with a function f of the above form

gives a %-approximation.

EADS I 17 MAXSAT
(© Harald Racke

0.8

0.6

0.4

0.2

0.4

0.6

0.8

4x-1

1-47%

EADS Il
(© Harald Racke

17 MAXSAT

Pr[C; not satisfied]

EADS Il 17 MAXSAT
(© Harald Racke

Pr[C; not satisfied] = [[(1 — f(»i) [] »i

i€P; ieN;

EADS Il 17 MAXSAT o

(© Harald Racke

Pr[C; not satisfied] = [[(1 — f(»i) [] »i

EADS Il
(© Harald Racke

iEPj iENj
< [T4 [47
iEPj iENj
17 MAXSAT o = = =

Pr[C; not satisfied] = [[(1 — f(»i) [] »i

i€P; ieN;
< 1_[4=Yi n 4vi-1
i€P; iEN;

_ 4—(Ziepj Yit2ien; (1->1)

EADS Il 17 MAXSAT o

(© Harald Racke

Pr[C; not satisfied] = [[(1 — f(»i) [] »i

i€P; ieN;
< 1_[4=Yi n 4vi-1
i€P; iEN;

_ 4—(Ziepj Yit2ien; (1->1)

< 47%j

EADS Il 17 MAXSAT o

(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,

EADS Il 17 MAXSAT =]
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,

Pr[C; satisfied]

EADS Il 17 MAXSAT o
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,

Pr[C; satisfied] = 1 — 472

EADS I 17 MAXSAT o
(© Harald Racke

The function g(z) =1 —47% is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 -47% > %zj .

EADS I 17 MAXSAT
(© Harald Racke

The function g(z) =1 —47% is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 -47% > %zj .

EADS I 17 MAXSAT
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,
3
Pr[C; satisfied] =1 -47% > e
Therefore,

E[W]

EADS I 17 MAXSAT o
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,
Pr[C; satisfied] =1 -47% > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied]
J

EADS I 17 MAXSAT
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,
Pr[C; satisfied] =1 -47% > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ
J

EADS I 17 MAXSAT
(© Harald Racke

The function g(z) =1 — 477 is concave on [0,1]. Hence,
Pr[C; satisfied] =1 -47% > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ > zOPT
J

EADS I 17 MAXSAT
(© Harald Racke

Can we do better?

EADS Il
(© Harald Racke

17 MAXSAT

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

EADS Il 17 MAXSAT
(© Harald Racke

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

EADS Il 17 MAXSAT
(© Harald Racke

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

EADS Il 17 MAXSAT
(© Harald Racke

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 61 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

EADS Il 17 MAXSAT
(© Harald Racke

Lemma 62
Our ILP-formulation for the MAXSAT problem has integrality gap
at most 3.

EADS Il 17 MAXSAT
(© Harald Racke

Facility Location

Integer Program

min
s.t. VjeD
VieF,jeD
VieF,jeD
VieF

2lier JiYi + 2ieF 2.jep CijXij
2ieF Xij

Xij

Xij

Yi

<

S
S

1

Yi

{0, 1}
{0,1}

As usual we get an LP by relaxing the integrality constraints.

EADS I
(© Harald Racke

18 Facility Location

Facility Location

Dual Linear Program

max 2.jep Vj
s.t. VieF ZjED wij < fi
ViEF,jED Vj —Wij = Cjj
VieF,jeD Wwij = 0
EADS Il 18 Facility Location

(© Harald Racke

Facility Location

Definition 63
Given an LP solution (x*, y*) we say that facility i neighbours
client j if x;; > 0. Let N(j) = {i eF:x{kj > 0}.

EADS Il 18 Facility Location
(© Harald Racke

Lemma 64

If (x*,y*) is an optimal solution to the facility location LP and
(v*,w*) is an optimal dual solution, then xi*j > 0 implies

Cij < v;.“.

Follows from slackness conditions.

EADS Il 18 Facility Location
(© Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

EADS Il 18 Facility Location =] F =
(© Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v

EADS Il 18 Facility Location
(© Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v

Hence, the total assignment cost is

D.Ci;j < 2 vf <OPT,
J J

where i; is the facility that client j is assigned to.

EADS Il 18 Facility Location
(© Harald Racke

Problem: Facility cost may be huge!

EADS Il 18 Facility Location
(© Harald Racke

Problem: Facility cost may be huge!

Suppose we can partition a subset F’ < F of facilities into
neighbour sets of some clients. l.e.

F' =HNGi)
k

where j1, j2,... form a subset of the clients.

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj, .

We have

fik

EADS Il 18 Facility Location =] F =

(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj, .

We have

fio = fie > x5,

ieN(jk)

EADS Il 18 Facility Location =] F =

(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj, .

We have
o r * Ak
flk = fix Z Xij = z fzxijk
ieN (jx) ieN (jx)
EADS Il 18 Facility Location =] F =

(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj, .

We have
o * Ak Ak
fi = fix Z Xij = Z flxijk = z fivi .
ieN(jk) ieN(jk) ieN(jx)
EADS Il 18 Facility Location =] F =

(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj, .

We have
o * Ak Ak
fi = fix Z Xij = Z flxijk = z fivi .
ieN(jk) ieN(jk) ieN(jx)
EADS Il 18 Facility Location =] F =

(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fue > xf o< > fixh< X fivi.

ieN (jk) ieN (jk) ieN (jk)

Summing over all k gives

Zfik
k

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fi 2 xf, < > fixf< > fivd

ieN (jk) ieN (jk) ieN (jk)

Summing over all k gives

Zflk—z Z flyl

k ieN(jk)

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fi 2 xf, < > fixf< > fivd

ieN (jk) ieN (jk) ieN (jk)

Summing over all k gives

Zflk—z Z flyl Zfiyi*

k ieN(jk) ieF’

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fi 2 xf, < > fixf< > fivd

ieN (jk) ieN (jk) ieN (jk)

Summing over all k gives

Zflk <> > fivi= D fivi=D> five

k ieN(jk) ieF’ ieF

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fi 2 xf, < > fixf< > fivd

ieN (jk) ieN (jk) ieN (jk)

Summing over all k gives

Zflk <> > fivi= D fivi=D> five

k ieN(jk) ieF’ ieF

EADS Il 18 Facility Location
(© Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it fj,.

We have

fio=fi 2 xf, < > fixf< > fivd

i€N (i) i€N (i) ieN(jx)
Summing over all k gives
Zflk <> > fivi= D fivi = X fivk
k ieN(jx) iceF’ ieF

Facility cost is at most the facility cost in an optimum solution.

EADS Il 18 Facility Location
(© Harald Racke

Problem: so far clients ji, j2,... have a neighboring facility.
What about the others?

EADS Il 18 Facility Location
(© Harald Racke

Problem: so far clients ji, j2,... have a neighboring facility.
What about the others?

Definition 65
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

EADS Il 18 Facility Location
(© Harald Racke

Problem: so far clients ji, j2,... have a neighboring facility.
What about the others?

Definition 65
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

Note that N (j) is a set of facilities while N2(j) is a set of clients.

EADS Il 18 Facility Location
(© Harald Racke

Algorithm 8 FacilityLocation

1: C < D// unassigned clients

2: k<0

3: while C = 0 do

4 k—k+1

5 choose ji € C that minimizes vJ’-k

6: choose iy € N(ji) as cheapest facility

7 assign jx and all unassigned clients in N2(jx) to i
8 C — C— {jx} - N*(ji)

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

EADS Il 18 Facility Location =] F
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:

*

» Fix k; set j = jx and i = ix. We know that ¢;j < vy

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.

» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.

» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cig

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.

» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj + Cpy

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.

» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj + Cpe SV + V] + V)

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V + V] + V) <3V)

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V + V] + V) <3V)

EADS Il 18 Facility Location
(© Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = jx and i = ix. We know that ¢;; < v;‘.

» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V + V] + V) <3V)

Summing this over all facilities gives that the total assignment
cost is at most 3 - OPT. Hence, we get a 4-approximation.

EADS Il 18 Facility Location
(© Harald Racke

In the above analysis we use the inequality

> fiyF <OPT .

ieF

EADS Il 18 Facility Location
(© Harald Racke

In the above analysis we use the inequality

> fiyF <OPT.

ieF

We know something stronger namely

> fivi+ > > cijx}; < OPT .

ieF ieF jeD

EADS Il 18 Facility Location
(© Harald Racke

Observation:

» Suppose when choosing a client ji, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to x;“jk.

EADS Il 18 Facility Location
(© Harald Racke

Observation:

» Suppose when choosing a client ji, instead of opening the
cheapest facility in its neighborhood we choose a random
facility according to x;“jk.

» Then we incur connection cost

L. *
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
V).

EADS Il 18 Facility Location
(© Harald Racke

Observation:

» Suppose when choosing a client ji, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to x;“jk.

» Then we incur connection cost
L. *
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
*
vfk)'
» Define

X _ LAk
i

to be the connection cost for client j.

EADS Il 18 Facility Location
(© Harald Racke

What will our facility cost be?

EADS Il 18 Facility Location
(© Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j; s are disjoint).

EADS Il 18 Facility Location
(© Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j; s are disjoint).

We open facility i with probability x;;, < y; (in case it is in some
neighborhood; otw. we open it with probability zero).

EADS Il 18 Facility Location
(© Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j; s are disjoint).

We open facility i with probability x;;, < y; (in case it is in some
neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

> fivi .

ieF

EADS Il 18 Facility Location
(© Harald Racke

Algorithm 9 FacilityLocation

1: C < D// unassigned clients

2: k<0

3: while C = 0 do

4: k—k+1

5: choose ji € C that minimizes v} + C;

6: choose iy € N(jg) according to probablllty Xij -

7: assign jx and all unassigned clients in N2(jx) to ik
8: C — C— {jx} — N*(ji)

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:

» Fix k; set j = ji.

EADS Il
(© Harald Racke

18 Facility Location

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at most

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at most

D CijX [+ Chj+ Chy
i

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at most

*

zcuxijk +cenj+ e <Cr+vli+v]
i

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at most

*

zcuxijk +enj+ o <Cr+vi+v) <Cf+2v)
i

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at most

*

zcuxijk +enj+ o <Cr+vi+v) <Cf+2v)
i

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = j.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).
» If we assign a client £ to the same facility as i we pay at most

*

zcuxijk +enj+ o <Cr+vi+v) <Cf+2v)
i

Summing this over all clients gives that the total assignment cost
is at most

ZC}“ +szf < Zcf + 20PT
J J J

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = j.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).
» If we assign a client £ to the same facility as i we pay at most

Zcuxijk +enj+ o <Cr+vi+v) <Cf+2v)
i

Summing this over all clients gives that the total assignment cost
is at most

ZC}“ +szf < Zcf + 20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

EADS Il 18 Facility Location
(© Harald Racke

Total assignment cost:
» Fix k; set j = j.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).
» If we assign a client £ to the same facility as i we pay at most

*

Zcuxijk +enj+ o <Cr+vi+v) <Cf+2v)
i

Summing this over all clients gives that the total assignment cost
is at most
* * *
ZCJ. +szj < ZCJ. +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Adding the facility cost gives a 3-approximation.

EADS Il 18 Facility Location
(© Harald Racke

Lemma 66 (Chernoff Bounds)

Let X1,...,Xn ben independent 0-1 random variables, not
necessarily identically distributed. Then for X = > | X; and
Uu=E[X],L<u=<U,andd >0

5 U
PriX > (1 +8)U] < (e) :

(1+ 5)1+6
and
e o t
PT[X <(1- 6)L] < <(1_5)1—5) y
EADS II 19.1 Chernoff Bounds

(© Harald Racke

Lemma 67
For 0 < 6 <1 we have that

5 U
&) U3
(1+ 5)1+6 -

and

=5 L
e) L
(1- 5)1—5 -

EADS Il 19.1 Chernoff Bounds

(© Harald Racke

Integer Multicommodity Flows

» Given s;-t; pairs in a graph.
» Connect each pair by a paths such that not too many path
use any given edge.

min w
st. Vi Ypep,Xp = 1
zp:eep Xp = 14
xp € {0,1}
EADS Il 19.1 Chernoff Bounds

(© Harald Racke

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set ; at random according
to the probability distribution given by the Linear Programming
Solution.

EADS II 19.1 Chernoff Bounds
(© Harald Racke

Theorem 68

If W* > cInn for some constant c, then with probability at least

n=¢/3 the total number of paths using any edge is at most
W* + VcW*Inn.

EADS Il
(© Harald Racke

19.1 Chernoff Bounds

Integer Multicommodity Flows

EADS I 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

EADS Il 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = >; X}.

EADS Il 19.1 Chernoff Bounds

(© Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = >; X}.

E[Y.]

EADS II 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = >; X}.

EY]=3 3 x;

i pePiecp

EADS II 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = >; X}.

ElYJl=> > xp= > xh<w*

i pePiecp p:ecP

EADS Il 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

EADS I 19.1 Chernoff Bounds
(© Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

Th
en 1

_ 2
Pr(Ye = (1+&)W*]<e ™03 = g

EADS II 19.1 Chernoff Bounds
(© Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min K wixg
s.t. VuelU Xiues; Xi
Vie{l,..., k} Xi

EADS Il 20 Primal Dual Revisited

(© Harald Racke

\%

%

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Sk wixg
s.t. VuelU Xiues; Xi
Vie{l,...,k} X

Dual Formulation:

max 2uet Yu
s.t. Vie{l,... k} Zu:ueSiyu
Yu
EADS Il 20 Primal Dual Revisited

(© Harald Racke

\%

%

IA

\%

Wi

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
» ldentify an element e that is not covered in current primal
integral solution.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set x; = 1 (add this set to

your solution).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

> Ve =wj
eeSj
EADS Il 20 Primal Dual Revisited

(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =w;
eeSj

» Hence our cost is

EADS I 20 Primal Dual Revisited

(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

Z Ye = Wj
eeSj
» Hence our cost is
Dw;
J
EADS I 20 Primal Dual Revisited

(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =w;
eeSj
» Hence our cost is
ij =2 2. Ye
Jj e€s;
EADS I 20 Primal Dual Revisited

(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D Ve =wj

eeSj

» Hence our cost is

ZwJ—Z Zye—ZHJ ecSit-ve

Jj e€s;

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D Ve =wj

eeSj

» Hence our cost is

Dwj= Z%—XI{J ecSjtl-ye<f- Zye<f OPT

Jj Jj e€s;

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

EADS II 20 Primal Dual Revisited = 5 =
(© Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
xj>0= Z Ve = Wj
eeSj
EADS Il 20 Primal Dual Revisited

(© Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eeSj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€Ss;

then the solution would be optimal!!l

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

EADS II 20 Primal Dual Revisited = 5
(© Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

YVe>0=1< > x;<f

Jie€Ss;

EADS Il 20 Primal Dual Revisited
(© Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

YVe>0=1< > x;<f

Jie€Ss;

This is sufficient to show that the solution is an f-approximation.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Suppose we have a primal/dual pair

min

s.t. Vi Zj: aijxj

Vi

EADS Il
(© Harald Racke

2jCiXj max 2ibiyi
> by s.t. Vj Zi aijyi
Xj = 0 Vi Vi

20 Primal Dual Revisited

IA

%

Suppose we have a primal/dual pair

min 2.j CjX;j max >.ibiyi
s.t. Vi Zj: aijjxXj = b; s.t. Vj Zi aijyi = Cj
Yj Xj = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
o’

\%

Xj > 0= Zaijyi
i

Yi > 0= Zainj
J

IA

Bb;

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Then

2. CjXj
J

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

2. CjXj
J

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

right hand side of j-th
dual constraint

I
2R
J

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

z:cij

2| 2 @i) %

J

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

J

o3 (Sau,)
J

i

Deixjl< o | Y aijyi| x;
Jj i

EADS II 20 Primal Dual Revisited
(© Harald Racke

Then

2. CjXj
J

<o | Dlaijyi| x;
7 \q

o3 (Sau,)

i \j
<aB-> biyi
i

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

Deixjl< o | Y aijyi| x;
7 7 \7

o3 (Sau,)

3 J
<aB > biyi
i

dual objective

EADS II 20 Primal Dual Revisited
(© Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some cycles.

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

EADS Il 20 Primal Dual Revisited

(© Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Let C denote the set of all cycles (where a cycle is identified by its
set of vertices)

EADS Il 20 Primal Dual Revisited = 5 =
(© Harald Racke

Let C denote the set of all cycles (where a cycle is identified by its
set of vertices)

Primal Relaxation:

min D WyXy
st. VCeC Dyecxv =
Yv xy = 0
Dual Formulation:
max 2.cecYc
st. YveV YcoecyYe < wy
vC ye = 0
EADS I 20 Primal Dual Revisited

(© Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

EADS Il 20 Primal Dual Revisited
(© Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase Y, until dual constraint for some vertex v becomes
tight.

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase Y, until dual constraint for some vertex v becomes
tight.
» set x, = 1.

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

Then

z Wy Xy
v

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

z:wvxv—-z: 2: YcXv

vV CwveC

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Then

Zwvxv =Z Z YcXv
v

vV CwveC

>, 2. e

veS CveC

where S is the set of vertices we choose.

EADS II 20 Primal Dual Revisited
(© Harald Racke

Then

Zwvxv =Z Z YcXv
v

vV CwveC
=2 > v
veS CveC
=>18nCl-yc
C

where S is the set of vertices we choose.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Then

Zwvxv =Z Z YcXv
v

vV CwveC
=2 > v
veS CveC
=>18nCl-yc
C

where S is the set of vertices we choose.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Then

Zwvxvzz Z YcXv
v

vV CwveC
=> 2
veS CveC
=>1SnCl- e
C

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this
is unrealistic.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Algorithm 10 FeedbackVertexSet

1. y<0

2. x <0

3. while exists cycle C in G do

4: increase yc until thereis v € C s.t. X.c.pec Ve = Wy
5: Xy =1

6: remove v from G

7: repeatedly remove vertices of degree 1 from G

EADS I 20 Primal Dual Revisited

(© Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses
at most one vertex from P.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most & we get an x-approximation.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most & we get an x-approximation.

Theorem 69

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

Yc>0=>|SNnC|<0O(logn) .

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V,E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V,E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
s.t. vVSeS 2615(5) Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Dgocss)Vs
vVSes s
EADS I 20 Primal Dual Revisited

(© Harald Racke

IA

2

9

(e)

Primal Dual for Shortest Path

The Dual:
max 2.5 Ys
st. Ve€E Jgeecsis)Vs = cle)
vSes Vs =

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

EADS II 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS Il

20 Primal Dual Revisited
(© Harald Racke

Algorithm 11 PrimalDualShortestPath
1y <0
2. F<0
3: while there is no s-t path in (V,F) do
4: Let C be the connected component of (V,F) con-
taining s
5: Increase y¢ until there is an edge ¢’ € 6(C) such
that Xg.ere5(s) Vs = c(e).
6: F—Fu{e'}
7: Let P be an s-t path in (V,F)
8: return P

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 70
At each point in time the set F forms a tree.

EADS II 20 Primal Dual Revisited
(© Harald Racke

Lemma 70
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 70
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

> cee)

ecP

EADS Il
(© Harald Racke

20 Primal Dual Revisited

dDcee)=> > ys

ecP ecP S:ecd(S)

EADS Il
(© Harald Racke

20 Primal Dual Revisited

dee)=> > s

ecP ecP S:ecd(S)

A I]

Sises,t¢S

“ys .

EADS Il
(© Harald Racke

20 Primal Dual Revisited

dee)=> > s

ecP ecP S:ecd(S)

A I]

Sises,t¢S

“ys .

EADS Il
(© Harald Racke

20 Primal Dual Revisited

e =2 > s

ecP ecP S:ecd(S)

= > IPnsS)|-ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z cle) = Zyg < OPT

ecP S

by weak duality.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

e =2 > s

ecP ecP S:ecd(S)

= > IPnsS)|-ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z cle) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

EADS Il
(© Harald Racke

20 Primal Dual Revisited

If S contains two edges from P then there must exist a subpath P’
of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

If S contains two edges from P then there must exist a subpath P’
of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

If S contains two edges from P then there must exist a subpath P’
of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F’ U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

If S contains two edges from P then there must exist a subpath P’
of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F’ U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs
si,ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every i € {1,...,k}
there is a path between s; and t; only using edges in F.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs
si,ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every i € {1,...,k}
there is a path between s; and t; only using edges in F.

min 2ecle)xe
s.t. VScV:SeS§iforsomei Y,c5i9)Xe = 1
Ve cE xe € {0,1}

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs
si,ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every i € {1,...,k}
there is a path between s; and t; only using edges in F.

min Decle)xe

s.t. VScV:SeS§iforsomei Y,c5i9)Xe = 1
Ve cE xe € {0,1}

Here S; contains all sets S suchthats; € Sand t; ¢ S.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

max 2.S:3istSe s; Vs
st. VeeE D 5:ee5(S) VS
ys

IA

c(e)

I\
()

The difference to the dual of the shortest path problem is that we
have many more variables (sets for which we can generate a moat
of non-zero width).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Algorithm 12 FirstTry

vy <0

F<0

while not all s;-t; pairs connected in F do
Let C be some connected component of (V, F) such
that |C n {s;,t;}| = 1 for some i.

5: Increase y¢ until there is an edge ¢’ € 6(C) s.t.

N w N =

2.sesie'es(s) Vs = Ce!
6: F—Ful{e'}
: Let P; be an s;-t; path in (V,F)
return J; P;

o N

EADS Il 20 Primal Dual Revisited
(© Harald Racke

EADS Il
(© Harald Racke

20 Primal Dual Revisited

D=2 > s

ecF ecF S:eed(S)

EADS Il 20 Primal Dual Revisited
(© Harald Racke

D)= > ys=>I6(8)nF|-ys .

ecF ecF S:eed(S) S

EADS Il 20 Primal Dual Revisited
(© Harald Racke

D)= > ys=>I6(8)nF|-ys .

ecF ecF S:eed(S) S

EADS Il 20 Primal Dual Revisited
(© Harald Racke

docler=> > y5—2|55)ﬂF| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

dee)=> > ys—ZI(S (S)NF|-ys .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

dDcele)=> > ys=>18(S)NFl-ys .

ecF ecF S:ecs(S) S

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.

» The i-th pair is vg-v;.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

docler=> > y5—2|55)ﬂF| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.
» The i-th pair is vg-v;.

» The first component C could be {vg}.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

docler=> > y5—2|55)ﬂF| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.

v

The i-th pair is vg-v;.

v

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

docler=> > y5—2|55)ﬂF| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:

» Take a graph on k + 1 vertices vg, vy,..., Vk.

v

The i-th pair is vg-v;.

v

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

docler=> > y5—2|55)ﬂF| Vs .

ecF ecF S:e€d(S)

If we show that ys > 0 implies that |6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a graph on k + 1 vertices vg, vy,..., Vk.

» The i-th pair is vg-v;.

v

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
Yive} > 0 but [6({vo}) NF| =

v

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Algorithm 13 SecondTry

1:y<0;F<0;0 -0

2: while not all s;-t; pairs connected in F do

3: {—1+1

4: Let C be set of all connected components C of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase y¢ for all C € C uniformly until for some edge
ep €6(C), C" € Cs.t. Ysepes(5) Vs = Cey
F — Fu {eyp}

F' < F

for k — £ downto 1 do // reverse deletion
if [’ — ey is feasible solution then

remove ey from F’

vl

- O © ® N O

: return F’

—_ -

EADS Il 20 Primal Dual Revisited
(© Harald Racke

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges in
any order.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Example

]
S1 52 tr

51

.53

t3

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Example

(]
S1 52 tr

t

053

t3

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Example

t

S1

S2 tr

053

t3

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Example

t

S1

S2 to

053

t3

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Example

t

S1

S2 to

053

t3

EADS Il
(© Harald Racke

20 Primal Dual Revisited

Example

EADS Il

(© Harald Racke

20 Primal Dual Revisited

«O» < Fr o«

>«

3

361/366

Example

EADS Il

(© Harald Racke

20 Primal Dual Revisited

«O» < Fr o«

>«

3

361/366

Example

EADS Il

(© Harald Racke

20 Primal Dual Revisited

«O» < Fr o«

>«

3

361/366

Example

EADS Il

(© Harald Racke

20 Primal Dual Revisited

«O» < Fr o«

>«

3

361/366

Example

EADS Il

(© Harald Racke

20 Primal Dual Revisited

«O» < Fr o«

>«

3

361/366

Lemma 71
For any C in any iteration of the algorithm

> 16(C)nF'| < 2|C]|

ceC

This means that the number of times a moat from C is crossed in
the final solution is at most twice the number of moats.

Proof: later...

EADS Il 20 Primal Dual Revisited
(© Harald Racke

2, ce

ecF’

EADS Il
(© Harald Racke

20 Primal Dual Revisited

2 =2 2 s

ecF’ ecF’ S:eed(S)

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Dce=D > ¥Ys=>IF &S ys .

ecF’ ecF’ S:eed(S) S

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Dce=D > ¥Ys=>IF &S ys .

ecF’ ecF’ S:eed(S) S

EADS Il 20 Primal Dual Revisited
(© Harald Racke

dDece=> > yg—ZIF NéS)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
N S

EADS II 20 Primal Dual Revisited
(© Harald Racke

Dce=D> D> ys=>IFn&S) s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].

EADS Il 20 Primal Dual Revisited
(© Harald Racke

D=2 D ys—Z|F n3(S)]

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 72
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2|C]
ceC

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 72
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 72
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 72

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.

» LetH = F - F,.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

Lemma 72

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]|
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.

» LetH = F - F,.

» All edges in H are necessary for the solution.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Contract all edges in F; into single vertices V'.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

EADS Il 20 Primal Dual Revisited =

(© Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

EADS 1l 20 Primal Dual Revisited
(© Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color avertex v € V' red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color avertex v € V' red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have
?
> deg(v) = > [5(C) nF'| =2|C| = 2|R|
vER cecC
EADS I 20 Primal Dual Revisited

(© Harald Racke

» Suppose that no node in B has degree one.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.

» Then

Y. deg(v)

VER

EADS II 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then
>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |B|) — 2|B|

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then
>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |Bl) — 2|B| = 2|R]|

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |Bl) — 2|B| = 2|R]|

» Every blue vertex with non-zero degree must have degree at
least two.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |Bl) — 2|B| = 2|R]|

» Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

2(IR| + |Bl) — 2|B| = 2|R|

IA

» Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

2(IR| + |Bl) — 2|B| = 2|R|

IA

» Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

» But then it must be a red node.

EADS Il 20 Primal Dual Revisited
(© Harald Racke

	Introduction
	Simplex Algorithm
	Duality
	Degeneracy Revisited
	Seidels LP-algorithm
	The Ellipsoid Algorithm
	Karmarkar's Algorithm
	Karmarkar's Algorithm
	Introduction
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines: Local Search
	Scheduling on Identical Machines: Greedy
	TSP
	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing

	Advanced Rounding for Bin Packing
	Configuration LP

	MAXSAT
	Facility Location
	Integer Multicommodity Flows
	Chernoff Bounds

	Primal Dual Revisited

