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Definition 17
For b = 2a — 1 an (a, b)-tree is a search tree with the following
properties
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children
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7.4 (a, b)-trees

Definition 17
For b = 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty
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7.4 (a, b)-trees

Definition 17
For b = 2a — 1 an (a, b)-tree is a search tree with the following
properties

1.

all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys
(external search tree)
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7.4 (a, b)-trees

Definition 17
For b = 2a — 1 an (a, b)-tree is a search tree with the following
properties

1.

all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys
(external search tree)

5. there is a special dummy leaf node with key-value o

EADS 7.4 (a,b)-trees

(© Ernst Mayr, Harald Racke



7.4 (a, b)-trees

Each internal node v with d(v) children stores d — 1 keys
ki,...,kg — 1. The i-th subtree of v fulfills

ki_1 < keyin i-th sub-tree <k; ,

where we use kg = —o and kg = .
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7.4 (a, b)-trees

Example 18
1 3 5 14 28
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7.4 (a, b)-trees

Variants

» The dummy leaf element may not exist; this only makes
implementation more convenient.
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Variants

» The dummy leaf element may not exist; this only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.
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7.4 (a, b)-trees

Variants

» The dummy leaf element may not exist; this only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

» A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.
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7.4 (a, b)-trees

Variants

» The dummy leaf element may not exist; this only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

» A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.

» A B* tree stores the data only at leaf nodes as in our
definition. Sometimes the leaf nodes are also connected in a
linear list data structure to speed up the computation of
successors and predecessors.
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7.4 (a, b)-trees

Variants

>

The dummy leaf element may not exist; this only makes
implementation more convenient.

Variants in which b = 2a are commonly referred to as
B-trees.

A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.

A BT tree stores the data only at leaf nodes as in our
definition. Sometimes the leaf nodes are also connected in a
linear list data structure to speed up the computation of
successors and predecessors.

A B* tree requires that a node is at least 2/3-full as only
1/2-full (the requirement of a B-tree).
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Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2a" 1 <n+1<bh
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Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2a" 1 <n+1<bh

2. logy(n +1) < h <log, (%)
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Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2a" 1 <n+1<bh

2. logy(n +1) < h <log, (%)

Proof.
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Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2a" 1 <n+1<bh

2. logy(n +1) < h <log, (%)

Proof.

» If n > 0 the root has degree at least 2 and all other nodes
have degree at least a. This gives that the number of leaf
nodes is at least 2a”*~1.

EADS 7.4 (a,b)-trees
(© Ernst Mayr, Harald Racke



Lemma 19

Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then
1. 2ahl<n+1<bh

2. log,(n+1)<h< loga("T“)

Proof.

» If n > 0 the root has degree at least 2 and all other nodes
have degree at least a. This gives that the number of leaf
nodes is at least 2a”*~1.

» Analogously, the degree of any node is at most b and, hence,
the number of leaf nodes at most b".
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Search

The search is straightforward. It is only important that you need
to go all the way to the leaf.
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Search

The search is straightforward. It is only important that you need
to go all the way to the leaf.

Time: O(b - h) = O(b - logn), if the individual nodes are

organized as linear lists.
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Insert

Insert element x:

» Follow the path as if searching for key[x].
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Insert

Insert element x:
» Follow the path as if searching for key[x].
» If this search ends in leaf £, insert x before this leaf.
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Insert

Insert element x:
» Follow the path as if searching for key[x].
» If this search ends in leaf £, insert x before this leaf.

» For this add key[x] to the key-list of the last internal node v
on the path.

EADS 7.4 (a,b)-trees
(© Ernst Mayr, Harald Racke



Insert

Insert element x:
» Follow the path as if searching for key[x].
» If this search ends in leaf £, insert x before this leaf.

» For this add key[x] to the key-list of the last internal node v
on the path.

» |f after the insert v contains b nodes, do Rebalance(v).
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Insert

Rebalance(v):

» Letk;,i=1,...,b denote the keys stored in v.
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Insert

Rebalance(v):

» Letk;,i=1,...,b denote the keys stored in v.

> Let j:= L%J be the middle element.
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Insert

Rebalance(v):

» Letk;,i=1,...,b denote the keys stored in v.

> Let j:= L%J be the middle element.

» Create two nodes v1, and v2. v1 gets all keys ki, ...

and v, gets keys kj 1,...,kp.
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Insert

Rebalance(v):

>

>

>

Let k;, i =1,...,b denote the keys stored in v.

Let j:= L%J be the middle element.

Create two nodes v, and vz. vy gets all keys kq,...,kj_;
and v, gets keys kj 1,...,kp.
b-1

Both nodes get at least | =5~ | keys, and have therefore
degree at least L%J +1=>asinceb=2a-1.
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Insert

Rebalance(v ):

>

>

>

Let k;, i =1,...,b denote the keys stored in v.

h+1

Let j:= [ =] be the middle element.

Create two nodes v, and vz. vy gets all keys kq,...,kj_;
and v» gets keys kj+1,...,kb.

Both nodes get at least [ J keys, and have therefore
degree at least L—J +1=>asinceb=2a-1.

They get at most [ 11 keys, and have therefore degree at
most[ ]+1<lo(5|nceb>2)
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Insert

Rebalance(v):

>

>

>

Let k;, i =1,...,b denote the keys stored in v.

thlJ be the middle element.

Let j:=|
Create two nodes v, and vz. vy gets all keys kq,...,kj_;
and v» gets keys kj+1,...,kb.

Both nodes get at least [ J keys, and have therefore

degree at least L—J +1=>asinceb=2a-1.

They get at most [ 11 keys, and have therefore degree at
most[ ]+1<lo(5|nceb>2)

The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v, and a new pointer (to
the right of k;) in the parent is added to point to v3.
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Insert

Rebalance(v ):

>

>

>

Let k;, i =1,...,b denote the keys stored in v.

h+1

Let j:= [ =] be the middle element.

Create two nodes v, and vz. vy gets all keys kq,...,kj_;
and v» gets keys kj+1,...,kb.

Both nodes get at least [ J keys, and have therefore
degree at least L—J +1=>asinceb=2a-1.

They get at most [ 11 keys, and have therefore degree at
most[ ]+1<lo(5|nceb>2)

The key kj is promoted to the parent of v. The current
pointer to v is altered to point to v, and a new pointer (to
the right of k;) in the parent is added to point to v3.

Then, re-balance the parent.
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Insert
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Insert

Insert(8)
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14 28
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Insert

Insert(8)
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Insert

b
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Insert
Insert(6)
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Delete

Delete element x (pointer to leaf vertex):

» Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.
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Delete

Delete element x (pointer to leaf vertex):

» Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.

» Otherwise delete the key of the predecessor of x from v;
delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it
appears in exactly one internal vertex).
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Delete

Delete element x (pointer to leaf vertex):

» Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.

» Otherwise delete the key of the predecessor of x from v;
delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it
appears in exactly one internal vertex).

> If now the number of keys in v is below a — 1 perform
Rebalance’(v).
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Delete

Rebalance’(v):

> If there is a neighbour of v that has at least a keys take over
the largest (if right neighbor) or smallest (if left neighbour)
and the corresponding sub-tree.
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Delete

Rebalance’(v):
> If there is a neighbour of v that has at least a keys take over
the largest (if right neighbor) or smallest (if left neighbour)
and the corresponding sub-tree.

» If not: merge v with one of its neighbours.
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Delete

Rebalance’(v):
> If there is a neighbour of v that has at least a keys take over
the largest (if right neighbor) or smallest (if left neighbour)
and the corresponding sub-tree.
» If not: merge v with one of its neighbours.

» The merged node contains at most (a — 2) + (a — 1) + 1 keys,
and has therefore at most 2a — 1 < b successors.
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Delete

Rebalance’(v):

> If there is a neighbour of v that has at least a keys take over
the largest (if right neighbor) or smallest (if left neighbour)
and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

» The merged node contains at most (a — 2) + (a — 1) + 1 keys,
and has therefore at most 2a — 1 < b successors.

» Then rebalance the parent.
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Delete

Rebalance’(v):

> If there is a neighbour of v that has at least a keys take over
the largest (if right neighbor) or smallest (if left neighbour)
and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

» The merged node contains at most (a — 2) + (a — 1) + 1 keys,
and has therefore at most 2a — 1 < b successors.

» Then rebalance the parent.

» During this process the root may become empty. In this case
the root is deleted and the height of the tree decreases.
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Y

Y
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

W,
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:
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(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Note that this correspondence is not unique. In particular, there
are different red-black trees that correspond to the same
(2,4)-tree.
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