Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Each internal node v with d(v) children stores d-1 keys $k_1, \ldots, k_d - 1$. The *i*-th subtree of v fulfills

 $k_{i-1} < ext{ key in } i ext{-th sub-tree } \leq k_i$,

where we use $k_0 = -\infty$ and $k_d = \infty$.

Example 18

7.4 (*a*, *b*)-trees

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A *B** tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a *B*-tree).

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A *B** tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a *B*-tree).

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A *B** tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a *B*-tree).

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).

Variants

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2a^{h-1} \le n+1 \le b^h$

2. $\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof.

- \sim 16n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1.
$$2a^{h-1} \le n+1 \le b^h$$

2.
$$\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$$

Proof.

- ~ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1.
$$2a^{h-1} \le n+1 \le b^h$$

2.
$$\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$$

Proof.

- If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least 2a^{h-1}.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1.
$$2a^{h-1} \le n+1 \le b^h$$

2.
$$\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$$

Proof.

- ► If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least 2a^{h-1}.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1.
$$2a^{h-1} \le n+1 \le b^h$$

2.
$$\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$$

Proof.

- ► If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least 2a^{h-1}.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Search

7.4 (*a*,*b*)-trees

▲ □ ▶ < 圖 ▶ < 필 ▶ < 필 ▶
173/596

Search Search(8)

7.4 (*a*,*b*)-trees

Search Search(8)

7.4 (*a*,*b*)-trees

Search Search(19)

7.4 (*a*,*b*)-trees

Search Search(19)

7.4 (*a*,*b*)-trees

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert element *x*:

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Insert element *x*:

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Insert element *x*:

- ► Follow the path as if searching for key[*x*].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Insert element *x*:

- ► Follow the path as if searching for key[*x*].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Rebalance(v):

• Let k_i , i = 1, ..., b denote the keys stored in v.

• Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.

- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- Both nodes get at least [^{b-1}/₂] keys, and have therefore degree at least [^{b-1}/₂] + 1 ≥ a since b ≥ 2a 1.
- ► They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- Both nodes get at least [^{b-1}/₂] keys, and have therefore degree at least [^{b-1}/₂] + 1 ≥ a since b ≥ 2a 1.
- ► They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ► Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- Both nodes get at least [^{b-1}/₂] keys, and have therefore degree at least [^{b-1}/₂] + 1 ≥ a since b ≥ 2a 1.
- ► They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- Both nodes get at least \[\frac{b-1}{2}\] keys, and have therefore degree at least \[\frac{b-1}{2}\] + 1 ≥ a since b ≥ 2a 1.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

Rebalance(v):

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- They get at most [^{b-1}/₂] keys, and have therefore degree at most [^{b-1}/₂] + 1 ≤ b (since b ≥ 2).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- They get at most [^{b-1}/₂] keys, and have therefore degree at most [^{b-1}/₂] + 1 ≤ b (since b ≥ 2).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ► Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- They get at most [^{b-1}/₂] keys, and have therefore degree at most [^{b-1}/₂] + 1 ≤ b (since b ≥ 2).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- Then, re-balance the parent.
Insert

7.4 (a, b)-trees

▲ □ ▶ < 圖 ▶ < 볼 ▶ < 볼 ▶
176/596

Insert

7.4 (a, b)-trees

▲ □ ▶ < 圖 ▶ < 볼 ▶ < 볼 ▶
176/596

▲ □ ▶ < 圖 ▶ < 볼 ▶ < 볼 ▶
176/596

7.4 (*a*,*b*)-trees

7.4 (*a*,*b*)-trees

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a 1 perform Rebalance'(v).

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a 1 perform Rebalance'(v).

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ► If now the number of keys in v is below a 1 perform Rebalance'(v).

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- ► The merged node contains at most (a 2) + (a 1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

7.4 (*a*,*b*)-trees

Delete(10)

7.4 (*a*,*b*)-trees

Delete(10)

7.4 (*a*,*b*)-trees

Delete(10)

7.4 (*a*,*b*)-trees

7.4 (a, b)-trees

Delete(14)

7.4 (*a*,*b*)-trees

Delete(14)

7.4 (*a*,*b*)-trees

Delete(14)

7.4 (*a*,*b*)-trees
Delete(14)

7.4 (*a*,*b*)-trees

Delete(14)

7.4 (*a*,*b*)-trees

7.4 (a, b)-trees

▲ □ ▶ < 급 ▶ < 불 ▶
179/596

Delete(3)

7.4 (*a*,*b*)-trees

Delete(3)

7.4 (*a*,*b*)-trees

Delete(3)

7.4 (*a*,*b*)-trees

Delete(3)

7.4 (*a*,*b*)-trees

Delete(3)

7.4 (*a*,*b*)-trees

7.4 (*a*, *b*)-trees

Delete(1)

7.4 (*a*,*b*)-trees

Delete(1)

7.4 (*a*,*b*)-trees

Delete(1)

7.4 (*a*,*b*)-trees

7.4 (*a*, *b*)-trees

◆□ ▶ ◆ 酉 ▶ ◆ 壹 ▶ ◆ 壹 ▶ 179/596

Delete(19)

7.4 (*a*,*b*)-trees

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

◆□▶◆圖▶◆필▶< 180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶
180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶
180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶
180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 180/596

There is a close relation between red-black trees and (2, 4)-trees:

7.4 (a, b)-trees

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶
180/596

There is a close relation between red-black trees and (2, 4)-trees:

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.

7.4 (a, b)-trees