6.3 The Characteristic Polynomial

Consider the recurrence relation:
coTm)+c1Tn—-1)+c2T(n—=2)+---+cxT(n—-k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx = 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[0],T[1],T[2],... is completely determined
by a set of boundary conditions that specify values for
T[O],...,T[k—11].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.
» Then pick the right one by analyzing boundary conditions.

» First consider the homogenous case.
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The Homogenous Case

The solution space
S = {T = T[0],T[1],T[2],... | T fulfills recurrence relation}

is a vector space. This means that if T1,T> € S, then also
Ty + BT> € S, for arbitrary constants «, .

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

CoAn+C1An_1 + C2 _An—Z + -+ Ck - An_k =0

for all n > k.

EADS 6.3 The Characteristic Polynomial
© Ernst Mayr, Harald Racke

59

The Homogenous Case

Dividing by A"~¥ gives that all these constraints are identical to

C()Ak+C12\k71 + C2 CAk=Z +cr=0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A{‘
is a solution to the recurrence relation.

Let Aq,...,Ax be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
X1AY + 0AY + -+ oAy

is a solution for arbitrary values «;.
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The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of the
form

1Al + 0AY + -+ AR

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution for
every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

X1-A1 + 2-A2 + - 4+ Op-Ar = T[1]
o A+ A5+ e+ o AR = T[2]
oy - Ak Ak Ak = Tk
1A + oxe-Ay 4+ e+ oAy = T[k]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

A1 A - A o1 T[1]
AT OAS - AR o0 T[2]
Ak oak oAk ok T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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The Homogenous Case

Proof (cont.).
This we show by induction:
» base case (k = 1):
A vector (A;), A; # 0 is linearly independent.

» induction step (k — k + 1):
assume for contradiction that there exist «;’s with

Al Ak
| |+t =
k-1 k-1
k k
and not all &¢; = 0. Then all &; = 0! 0
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The Homogeneous Case

V1 : Al Vi =] A1
2 2
o1 + oo+ Ak =0
k-1 k=1
k _ k
?\11)1 = Al Akvk =! Ak
This means that
k k
Z «;v; = 0 and z Aixivi =0
i=1 i=1
Hence,
k-1 1 k-1
Z oV + v = 0and — — Z AV = XUk
i=1 Ak 5
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The Homogeneous Case

This gives that
k-1

Z (1- %)aivi =0.
i=1 k

This is a contradiction as the v;’s are linearly independent
because of induction hypothesis.
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The Homogeneous Case

What happens if the roots are not all distinct?
Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is AT" a solution to the recurrence but also nA?".

To see this consider the polynomial
PAAY K = coA™ + A" L 4 A" 2 4 - - - 4 Ak

Since A; is a root we can write this as Q(A)(A — A;)2. Calculating
the derivative gives a polynomial that still has root A;.

This means
C()TL/\?_1 +c1(n— 1))\?‘2 +top(n— k)A;’L—k—l -0
Hence,

Co?’l)\;-n +c1(n— 1)}\?71 +tcox(n— k))\;’hk -0

—— S — [ —
T[n] T[n-1] T[n—k]
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(n— DAL+ v g —k)ATF =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

Con‘z?\? +c1(n— 1)2}\?_1 4+ +ox(n— k)ZA:{Lfk -0

We can continue j — 1 times.

Hence, n‘]A? is a solution for£ €0,...,j— 1.
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The Homogeneous Case

Lemma 6
Let P[A] denote the characteristic polynomial to the recurrence

coTnl+caTn—-11+---+cxT[n—-k]=0

LetAj,i=1,...,m be the (complex) roots of P[A] with
multiplicities €;. Then the general solution to the recurrence is
given by
m ﬁi—l
=> oij - (n/Al)
=1 j=0

~

The full proof is omitted. We have only shown that any choice of
«;ij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tnl=Tn-11+T[n-2]forn =2

The characteristic polynomial is

A2-A-1
Finding the roots, gives
1 1 1
AMp=—-x,-+1=-(1=
12 =5 2 5 < \FS>
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Example: Fibonacci Sequence

Hence, the solution is of the form
1+5\" 1-v5\"
“\™2 B

T[0] = 0 gives x+ = 0.

T[1] =1 gives
1++/5 1-+5 2
+ =1 —B=-
o(H57) () e
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Example: Fibonacci Sequence

Hence, the solution is

ACERER)
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The Inhomogeneous Case

Consider the recurrence relation:
coT(n)+caiTm—-1)+c2T(m—2)+---+cxT(m—k) =f(n)
with f(n) = 0.

While we have a fairly general technique for solving homogeneous,
linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n) =Tr(n) +Tp(n) ,

where T}, is any solution to the homogeneous equation, and T is
one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:

ITn]=Tn-1]1+1 T[0]=1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tnl-Tn-1]1=Tn-1]1-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] =1 and
T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
—_—
(A-1)2

Then the solution is of the form
Tn]=ol™+nl"=x+ pn
T[0] =1 gives x = 1.

T[1]=2gives1+B=2= B =1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree  this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=Tin-1]+ n?
Shift:

TIn-11=Tn-2]+n-1)°2=Tn-2]+n®>-2n+1

Difference:

Tnl-Tn-1]=Tn-1]1-Tn-2]+2n-1
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Tn]=2Tn-1]-Tn-2]+2n-1
Shift:

Tn-1]1=2Tn-2]-Tn-3]+2(n—-1) -1
=2T[n-2]-T[n-3]+2n-3

Difference:

Tn]l-Tn-1]=2T[n-1]-T[n-2]+2n-1
-2Tn-21+Tn-3]1-2n+3

Tn]=3Tn-1]-3T[n-2]1+T[n-3]+2

and so on...

EADS 6.3 The Characteristic Polynomial
(© Ernst Mayr, Harald Récke

78

6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= > anz™

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is

F(z) = > a—:’z".
n=0 n
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6.4 Generating Functions

Example 8
1. The generating function of the sequence (1,0,0,...) is
F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z):E.
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