6.2 Master Theorem

Lemma 4
Leta > 1,b =1 and € > 0 denote constants. Consider the
recurrence .
T(n) = aT(E) + f(n) .
Case 1.
If f(n) = O(nl°8(@=€) then T(n) = O(nlogra),
Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'°8r 2 1og"*! n).
Case 3.

If f(n) = Q(nlo8 (D +€) and for sufficiently large n
af(%) < cf(n) for some constant c <1 then T(n) = O(f(n)).
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b?, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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6.2 Master Theorem

This gives
log, n—-1 n
_ .,log,a il
T(n)=n + > af(bl.> )
i=0
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Case 1. Now suppose that f(n) < cnlog»a-€,
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Case 1. Now suppose that f(n) < cnlog»a-€,

T(n) _ nlogb a
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—-1 n
_ pplogpa _ i Ad
Tn)—n = > af ( loi)
i=0
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Case 1. Now suppose that f(n) < cnlo8ra—€,
log, n—-1 n
T -l =3 aif(r)
i=0
log, n—1

logy, a—€
(N
e 3 a(y)

i=0

IA
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Case 1. Now suppose that f(n) < cnlo8ra—€,
log, n—-1 n
T -l =3 aif(r)
i=0
log, n—1

logy, a—€
(N
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1
T(n) — nlosra = Z aif(%)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 )
p-ilogpa—e) — bei(blogh u)—i = peig—i } — Cnlogb a—e Z (be)l
i=0
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1
T(n) _nlogba — Z alf(%)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 )
p-ilogpa—e) — bei(blogb u)—i = peig-i } — Cnlogb a—e Z (be)l
i=0
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = Z alf(ﬁ)

i=0

log, n—1 logs, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1 ]
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ cnlogba—E(belogbn _ 1)/(196 _ 1)
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = Z alf(ﬁ)

i=0

log, n—1 log, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1 )
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ cnlogba—E(belogbn —1)/(bE-1)

= cnloBa€(me — 1)/ (b€ - 1)
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = Z alf(ﬁ)

i=0

log, n—1 log, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1 )
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ cnlogba—E(belogbn _ 1)/(196 _ 1)
= cnlo8ra=€(n€ — 1)/ (b - 1)
C

_ v  logpa ., _ €
= 51" bE(nt —1)/(n®)
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)

i=0

log, n—1 log, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1 )
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ cnlogba—E(beloghn —1)/(bE-1)

= cnloBa€(me — 1)/ (b€ - 1)

_ L logy, a ., _ €
=g it —-1)/(n)
Hence,
c 1
T(n) < +1 |nlogr@
(n) <lo€ 1 >
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Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)

i=0

log, n—1 log, a—e
- Z ; E Sb
<cC a bi

i=0
log, n—1 )
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ cnlogba—E(beloghn —1)/(bE-1)

= cnloBa€(me — 1)/ (b€ - 1)

_ ﬁnlogba(ne _ 1)/(n€)
Hence,
T(n) < (bec Tt 1>nl°gb(“) = T(n) = Q'8 a),
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Case 2. Now suppose that f(n) < cnlo8a,
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Case 2. Now suppose that f(n) < cnlo8a,

T(TL) _ nlogb a
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Case 2. Now suppose that f(n) < cnlogra,

log, n—-1 n
_ logpa _ i hid
T(n)-n = z atf ( bi)
i=0
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Case 2. Now suppose that f(n) < cnlogra,

log, n—-1 n
_ logpa _ i hid
T(n)—nosrd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a (bi>
i=0

IA
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Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
T(n)-nlo&ra =% a‘f(—l.)
. b
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0

IA
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Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
i n gp
<c > a i
i=0
log, n—1
=cnlogra X

i=0
cnl°8 4log, n
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Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
i n gp
<c > a i
i=0
log, n—1
=cnlogra X

i=0
cnl°8 4log, n

Hence,
T(n) = O(n'°% *log, n)
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Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
_plogya _ ig( N
T(n)—-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,

T(n) = O(n'°% *log, n) l:> T(n) = O(n'°8ralogn).
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Case 2. Now suppose that f(n) = cnlo8 4,
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Case 2. Now suppose that f(n) = cnlo8 4,

T(TL) _ nlogb a
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Case 2. Now suppose that f(n) = cnlogra,

log, n—-1 n
_ logpa _ i hid
T(n)-n = z atf ( bi)
i=0
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Case 2. Now suppose that f(n) = cnlogra,

log, n—-1 n
_ logpa _ i hid
T(n)—nosrd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a (bi>
i=0

v
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Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
T(n)-nlo&ra =% a‘f(—l.)
. b
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0

%
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Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
i n gp
>c > a i
i=0
log, n—1
=cnlogra X

i=0
cnl°8 4log, n
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Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
Ton) —nlowd =3 aif(7r)
i=0
log, n—1 log, a
i n gp
>c > a i
i=0
log, n—1
=cnlogra X

i=0
cnl°8 4log, n

Hence,
T(n) = Q(n'°% 2log, n)
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Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
_plogya _ ig( N
T(n)—-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0
cnl°8 4log, n

%

Hence,

T(n) = Qn'®%log,n) |= T(n) = Qn'#2logn).
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Case 2. Now suppose that f(n) < cnl°8 2 (log, (n))k.
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Case 2. Now suppose that f(n) < cnl°® 4 (log;, (n))k.

T(n) — nlogra
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Case 2. Now suppose that f(n) < cnl°® 4 (log;, (n))k.

log, n—-1

T(n)-nlo&a =% a‘f(%)

i=0
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

i=0
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

i=0

n:hisl’:logbn]
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

i=0

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1

T(n) — nlogra = Z aif(n)

i=0 b
log, n—1 logy, a k
‘n n
o 2 @) (om (50))
i=0
£-1

b€ k
n:hf:«é:logbn] = cnlogra Z (logb (ﬁ))
i=0

{-1
= cnlogra Z 0 - i)k
i=0
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.
logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 logy a k
(n n
s 3oa(g) T (lom (57))
i=0
£-1

b€ k
n:hf:«é:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlogra Z 0 - i)k
i=0
0
= cnlogra Z ik
i=1
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.
logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 logy a k
(n n
s 3oa(g) T (lom (57))
i=0
£-1

b€ k
n:hf:«é:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘e _ l)k
i=0

£
_ Cnlogh uz ik ~ %gkﬂ
i=1
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1 ’ n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 logy a k
(o) (om (57))
<c l;) a(bi 0gp | 4,7
£-1

b€ k
n:hf:«é:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlogra Z 0 - i)k
i=0
4
= cnlogra Z ik
i=1
~ %nlogh a€k+l
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Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1

log, n—1 n logy, a k
i
s 3 afg) - (om (5))
i=0
£-1 bg k
n:h":«{’:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1

= cnlogra Z 0 - i)k
i=0
¢

= cnlogra Z ik

i-1
~ %nlogh apk+l ‘ = T(n) = O(nl°%ralogt n).
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) <cf(n), forc < 1.
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1

Ton) —nloswd =3 aif ()

i=0
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1 n
T(n) —nlogra = Z a‘f<ﬁ>
i=0
log, n—-1
= > cifm)+omows)
i=0
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1 n

_ logpa _ i hAd

T(n)—-n = Z af(bi>
i=0
log, n—-1
= > c'fm)+omons)
i=0
i . 1—gn+l 1
q<1.z;":0ql: lq—q Sm
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1 n
1 .
T(n)-nloga =% a‘f<ﬁ>
i=0
log, n—-1
= > c'fm)+omons)
i=0
" _gn+l
q<1:3",qi=1 lq_{; < ﬁ < 1_ Cf(n) + O(HIOgha)
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1
Tin) - nowa =S aif()
i=0
log, n—-1
= > cfm)+oman)
i=0
1
l1-c¢

<

f(n) + O(n'osr 4)

T(n) <0(f(n))
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Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1 n
T(n) —nlogra = Z a‘f<ﬁ>
i=0
log, n—-1
> clif(n) + omloera)
i=0

1

log, a
=S+ 0m®e)

IA

T(n) < O(f(n)) > T(n) = 0(f(n).|

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01T1010(1 A
10001001|1 B

L
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01T1010(1 A
1000100 1|1 B

o
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01101[0/1T A
100010011 B

1

o
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B
00

Cl
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

o000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
10001[0011 B
1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01{(110101 A
1000/1)00 11 B

' J1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{1{101 01 A
IOOOIIO]OIIII B

01000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
jo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
Joo1000
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Example: Multiplying Two Integers
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For this we first need to be able to add two integers A and B:
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100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
/1001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
/11001000

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
011001000

1
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
' Jo11001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
1011001000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
;1 ,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

EADS 6.2 Master Theorem = 5 =
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1011
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001x1010
10001

EADS 6.2 Master Theorem = 5 =
© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x10@M1
10001
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X101
10001
0
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x10@M1

10001
100010
EADS 6.2 Master Theorem Or 3 - =
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101 1

10001
100010
EADS 6.2 Master Theorem Or 3 - =
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit

integer B (m < n).

10001 X101 1
10001
100010

00
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X101 1
10001
100010
0000OO0OO0OO
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X011
10001
100010
0000OO0OO0OO
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011

10001

100010

0000OO0OO0OO

00O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011

10001

100010

0000OO0OO0OO

100010O00O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

0000OO0OO0OO

100010O00O
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

0000OO0OO0OO

100010O00O

10111011
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

0000OO0OO0OO

100010O00O

10111011

Time requirement:
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

0000OO0OO0OO

100010O00O

10111011

Time requirement:

» Computing intermediate results: O(nm).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

10001

100010

0000OO0OO0OO

100010O00O

10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)ym) = O(nm).

EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn ble‘an a0
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

by -+ by by, - ble‘an o agag, -+ a
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By | X ‘ A Ao
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By | X ‘ A Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By | X ‘ A Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=A1By-2"+ (A;Bo + AoBy) - 22 + Ag - By

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Ay, By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + 7

NI HBDN T

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then O(1)
return ag - bg

split A into Ag and A;

split B into By and B;

Z> — mult(Ay, By)

Z1 — mult(Aq, Bg) + mult(Ag, By)

Zo — mult(Ap, Bo)

return Zo - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then O(1)
return ag - bg O(1)

split A into Ag and A;

split B into By and B;

Z> — mult(Ay, By)

Z1 — mult(Aq, Bg) + mult(Ag, By)

Zo — mult(Ap, Bo)
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Ay, By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + 7

NI HBDN T
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Ay, By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Ay, By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + 7

NI HBDN T

EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2: return ag - bg O(1)

3: split A into Ag and A, O(n)

4: split B into By and B; On)

5: Zp — mult(A,B;) T(%)

6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +0On)
7: Zo — mult(Ag, Bo)

8 return Z - 2" + 71 - 22 + 7

EADS 6.2 Master Theorem

(© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ap and A; O(n)
4: split B into By and B; On)
5: Zp — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +0On)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7
EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ag and A, O(n)
4: split B into By and B; On)
5: Zp — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +0On)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7 O(n)
EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ag and A, O(n)
4: split B into By and B; On)
5: Zp — mult(A,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +0n)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:

T(n) = 4T<g) + o) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(3) + f(n).

» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nl°8r4)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlogralogh+! n)
» Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

EADS
(© Ernst Mayr, Harald Racke
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nl°8r4)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlogralogh+! n)
» Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = @(n). Hence, we are in
Case 1, since n = O(n?=€) = O(nlo8ra-c),

EADS
(© Ernst Mayr, Harald Racke
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nl°8r4)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlogralogh+! n)
» Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = @(n). Hence, we are in
Case 1, since n = O(n?=€) = O(nlo8ra-c),

We get a running time of ©(n?) for our algorithm.
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(3) + f(n).
» Case 1: f(n) = O(nlo8ra-¢) T(n) = O(nlosra)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nlosra+€) T(n) = 0(f(n))

Inour case a =4, b =2, and f(n) = @(n). Hence, we are in
Case 1, since n = O(n?=€) = O(nlo8ra-c),

We get a running time of ©(n?) for our algorithm.
= Not better then the “school method”.
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB;
= (Ap+ A1) - (Bo+ B1) — A1B1 — AoBo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12

—t— ——
= (Ap+ A1) - (Bo +B1) — A1B1 — AgBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)

6: Zo — mult(Ao, By)

7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7
8 return Z - 2" + 71 - 22 + 7

6.2 Master Theorem
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)

6: Zo — mult(Ao, By)

7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7
8 return Z - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)

6: Zo — mult(Ao, By)

7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7
8 return Z - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)

6: Zo — mult(Ao, By)

7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7
8 return Z - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

EADS

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(A1,B1)

6: Zo — mult(Ao, By)

7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7
8 return Z - 2" + 71 - 22 + 7

6.2 Master Theorem

(© Ernst Mayr, Harald Racke

o)
O(1)
O(n)
On)
T(%)



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then O(1)
2 return ag - bg o)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A1,B1) T(%)
6: Zo — mult(Aog, By) ZT(%) +0On)
7: Z1 — mult(Ag+ A1,Bo+ B1) —Z>— 7

8 return Z - 2" + 71 - 22 + 7
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B| =1 then O(1)
2 return ag - bg o)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A1,B1) T(%)
6: Zo — mult(Aog, By) ZT(%) +0On)
7: 71 — mult(Ag +A1,B0:rB1) —Z2—Zo | T(%)
8 return Z» - 2"+ 71 - 22 + Z
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| =1 then O(1)
2 return ag - bg o)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A1,B1) T(%)
6: Zo — mult(Aog, By) ZT(%) +0On)
7: 71 — mult(Ag +A1,B0:rB1) —Z2—Zo | T(%)
8 return Z» - 2"+ 71 - 22 + Z O(n)
EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(g) +Om) .
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0(n) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
» Case 1: f(n) = O(nlogra-c) T(n) = ©(nloss a)
» Case 2: f(n) =08 a1ogkn) T(n) = O(n'°% 21ogk*! n)
> Case 3: f(n) = Qnwat€)  T(n) = 0(f(n)
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0(n) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
» Case 1: f(n) = O(nlogra-c) T(n) = ©(nloss a)
» Case 2: f(n) =08 a1ogkn) T(n) = O(n'°% 21ogk*! n)
> Case 3: f(n) = Qnwat€)  T(n) = 0(f(n)

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(nl.SQ)_
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Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0(n) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
» Case 1: f(n) = O(nlogra-c) T(n) = ©(nloss a)
» Case 2: f(n) =08 a1ogkn) T(n) = O(n'°% 21ogk*! n)
> Case 3: f(n) = Qnwat€)  T(n) = 0(f(n)

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(nl.SQ)_

A huge improvement over the “school method”.
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