6.2 Master Theorem

Lemma 4
Leta > 1,b =1 and € > 0 denote constants. Consider the
recurrence
T(n) = aT()+ fn) .
Case 1.
If f(n) = O(nl°8(@=€) then T(n) = O(nlogra),
Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'°8r 2 1og"*! n).
Case 3.

If f(n) = Q(nlo8 (D +€) and for sufficiently large n
af(%) < cf(n) for some constant c <1 then T(n) = O(f(n))

I Note that the cases do not cover all pos- |
| sibilities. 1
EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 41

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b?, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

42

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

43

6.2 Master Theorem

This gives
log, n—1 n
— plogya igl 22
T(n)=n + > af(bi>.
i=0
EADS 6.2 Master Theorem

© Ernst Mayr, Harald Racke

44

Case 1. Now suppose that f(n) < cnlo8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)

i=0

log, n—1 logs, a—e
- Z ; E Sb
<cC a l’)i

i=0
log, n—1]
p-ilogpa—e) — bei(blogb u)—i — beia—i} — Cnlogb a—e Z (be)l

i=0
_ Cnlogba—E(beloghn _ 1)/(196 -1)

= cnloBa€(me — 1)/ (b€ - 1)

C
_ ﬁnlogba(ne _ 1)/(n€)
Hence,
T(n) < (bec Tt 1>nl°gh(“) = T(n) = Q'8 a),
EADS 6.2 Master Theorem

© Ernst Mayr, Harald Racke 45

Case 2. Now suppose that f(n) < cnlogra,

log, n—1 n
_plogya _ ig(N
T(n)—-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,

T(n) = O(n'°% *log, n) l:> T(n) = O(n'°8ralogn).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 46

Case 2. Now suppose that f(n) = cnlogra,

log, n—1 n
_plogya _ ig(N
T(n)—-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
bi
i=0
log, n—1
=cnlogra X
i=0
cnl°8 4log, n

%

Hence,

T(n) = Qn'®%log,n) |= T(n) = Qn'#2logn).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 47

Case 2. Now suppose that f(n) < cnl°8 2 (log;, (n))k.

logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 logy a k
(o) (om (57))
<c i;) a(bi 0gp | 4,7
-1

b{’ k
n:h":«{’:logbn] = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘g _ l)k
i=0

0
_ Cnlogh az ik ~ %gkﬂ
i=1

c

n.

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

~ Enlogh apk+1 ‘:> T(n) = O(nloghalogk+l

48

Case 3. Now suppose that f(n) > dnl°8 a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < cif(n), where we assume that
n/bi-1 = ng is still sufficiently large.

log, n—1 n
T(n) —nlogra = Z a‘f<ﬁ>
i=0
log, n—-1
> clif(n) + omloera)
i=0

1

log, a
=S+ 0m®e)

IA

T(n) < O(f(n)) > T(n) = 0(f(n).|

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 49

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
;1 ,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke

50

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X1T0T11
100 0 1 mmmmmmommoaomoos .
100010
0 O O 0 0 O O bers that are generated can have
at most m + n < 2n bits.
10001000 "7 77mmmmmmmmmmoee
10111011

1

method” for multiplying integers. :

e Note that the intermediate num-:
1
1
1

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)ym) = O(nm).

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 51

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B By | X | A Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + B

Hence,

A-B=A1By-2"+ (A;Bo + AoBy) - 22 + Ag - By

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

52

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Ay, By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + 7

NI HBDN T

We get the following recurrence:

T(n) = 4T<g) + o) .

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

O(1)
o(1)
O(n)
On)
T(%)

2T (%) + O(n)

T(%)
O(n)

53

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(3) + f(n).
» Case 1: f(n) = O(nlo8ra-¢) T(n) = O(nlosra)
» Case 2: f(n) = O(nl°%ralogn) T(n) = O(nlo8ralogh*! n)
» Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inour case a =4, b =2, and f(n) = @(n). Hence, we are in
Case 1, since n = O(n?=€) = O(nlo8ra-c),

We get a running time of ©(n?) for our algorithm.
= Not better then the “school method”.

EADS 6.2 Master Theorem

© Ernst Mayr, Harald Racke

54

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo +B1) — A1B1 — AoBo

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| =1 then O(1)
2 return ag - bg o)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(A1,B1) T(%)
6: Zo — mult(Aog, By) ZT(%) +0On)
7: 71 — mult(Ag +A1,B0:rB1) —Z2—Zo | T(%)
8 return Z» - 2"+ 71 - 22 + Z O(n)
EADS 6.2 Master Theorem

© Ernst Mayr, Harald Racke

55

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T<§) +0(n) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
» Case 1: f(n) = O(nlogra-c) T(n) = ©(nloss a)
» Case 2: f(n) =08 a1ogkn) T(n) = O(n'°% 21ogk*! n)
> Case 3: f(n) = Qnwat€) T(n) = 0(f(n)

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(nl.SQ)_

A huge improvement over the “school method”.

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

56

