6.2 Master Theorem

Lemma 4
Lleta=>=1,b =1 and e > 0 denote constants. Consider the
recurrence "
T(n) = aT<E> + f(n) .
Case 1.

If f(n) = O (@D =€) then T(n) = O(nlosr),

Case 2.
If f(n) = O(nl°8@ logk n) then T(n) = O(N'°8r 2 1ogk* ! n).

~

Case 3.
If f(n) = Q(n'og@D+€y and for sufficiently large n
af(%) < cf(n) for some constant c < 1 then T(n) = O(f(n)).

1 Note that the cases do not cover all pos-

! sibilities.

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b'e, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Récke 42

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

000000000000 00 oME

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke

6.2 Master Theorem

This gives
log, n—1 n
_ J,logpa i A
Tn)=n + > af(bl.) .
i=0
EADS 6.2 Master Theorem
(@© Ernst Mayr, Harald Racke 44

Case 1. Now suppose that f(n) < cnlosra-¢,

log, n—-1

T(n) _nlogba _ Z alf(%)
i=0

log, n—-1 ' log, a—€

<c > al(ﬁl)

i=0 b

log, n—-1

pilogpa—e) _ pei(plogya)y—i — bEia’i} — Cnlogh a—e Z (be)i
i=0

Cnlogha—E(belogbn _ 1)/(be -1)

_ Cnlogbafe(ne _ 1)/(b6 -1)

c log, a(.,€ €
= ——n>4nt -1)/(n°)
be -1
Hence,
T(n) < (be Tt 1>n1°gb(“) = T(n) = O(nl°gra),
EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 45

Case 2. Now suppose that f(n) < cnlosr 2,

log, n—1 n
T(n) - nlogba _ Z atf(ﬁ)
i=0
log, n—-1 log, a
i E b
<c > a b
i=0
logy n—-1
=cnlo®ra 3
i=0

cnlog og, n

Hence,
T(n) = O(n'°%2log, n) { = T(n) = O 2logn).
EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Récke 46

Case 2. Now suppose that f(n) = cnlogra,

logp n—1 n
1
T(n)—nlowa = Y lf(ﬁ)
i=0
log, n—1 logs a
lﬁ 8h
>c > a =
i=0
logy n—1
=cnlo®ra 3

i=0

cnl°®r 4log, n

Hence,
T(n) = Q(n'°%2log, n) {:> T(n) = Q(n°%alogn).
EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke 47

Case 2. Now suppose that f(n) < cnl°82(log;, (n))k.

log, n—-1

logp n—-1 n\logra n\\k
(5r) - (o (57))

<c z a
- .
n:biit’:logbn} :Cnloghaz (logb<))

=0

~

,_.

_ Cnlogha Z (#

i=0

— cnlogr aZ ikl ~ %gkﬂ

N CnlogbaﬂkJrl ‘ - T(n) _ O(n]ogbalogk+l 7’1)

EADS 6.2 Master Theorem
(@© Ernst Mayr, Harald Racke 48

Case 3. Now suppose that f(n) = dn'°8a+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a'f(n/b') < ctf(n), where we assume that
n/b=1 > ng is still sufficiently large.

log, n—-1

; n
T(n)-nl%&a =% alf(ﬁ)
i=0
log, n—-1
= > cifm)+0mosa)
i=0
n i _gh+1 1 1
a<1:3%,q" = ll‘fq < ﬁ Sl — Cf(n) + O (n'°8r)
Hence,
T(n) < O(f(n)) > T(n) = 0(f(n).|

EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 49

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
,,90010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

EADS 6.2 Master Theorem
(@© Ernst Mayr, Harald Racke

50

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X1T0T11
1000 1 - .
100010
0 O 0 0 O 0 0 bers that are generated can have
at most m + n < 2n bits.
10001000 """ 777mmmmmmmm=s
10111011

method” for multiplying integers.
o Note that the intermediate num-

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)ym) = O(nm).

m EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 51

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2k, for some k.

B1 Bo ‘ X ‘ Ay Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

Hence,

A-B=AB; 2"+ (A;Bo + AoBy) - 22 + Ao - By

m EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Récke

52

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(3;) + f(n).
» Case 1: f(n) = O(nlogra—¢) T(n) = O(nlogra)
» Case 2: f(n) = O(nl°%ralogkn) T(n) = O(nlogra1ogh*! n)
> Case 3: f(n) = Q(n°® a7 T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?~€) = O(n'o8r a-¢€),

We get a running time of ©(n?) for our algorithm.

= Not better then the “school method”.

EADS 6.2 Master Theorem
(© Ernst Mayr, Harald Racke

54

1: if |A| = |B| = 1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A; On)
4: split B into By and B; O(n)
5: Zp — mult(A;,B1) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, B1) ZT(g) +On)
7: Zo — mult(Ag, By) T(%)
8: return Zp - 2" + 7 - 27 + Zo On)
We get the following recurrence:
n
T(n) = 4T<§) +0Omn) .
EADS 6.2 Master Theorem
© Ernst Mayr, Harald Racke 53
Example: Multiplying Two Integers
We can use the following identity to compute Z;:
Z1 = A1By + AoB; = /o =20
—r —
= (Ag + A1) - (Bop + B1) — A1B1 — ApBo
Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then O(1)
2 return ag - by o(1)
3: split A into Ap and A; O(n)
4: split B into By and B; O(n)
5: Zp — mult(Ay, B1) T(%)
6: Zy — mult(Ag, Bg) ZT(%) +0O(n)
7: Z1 — mult(Ag+ A1,Bo+B1) —Zr - Zo | T(%5)
8: return Z> - 2" + 71 - 27 + A O(n)

6.2 Master Theorem

© Ernst Mayr, Harald Racke

55

Example: Multiplying Two Integers

We get the following recurrence:
n
T(n) = 3T(§) +0n) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8a-c) T(n) = O(nlogra)
» Case 2: f(n) = ®(nl°%alogkn) T(n) = O(nlo8ralogh! n)
» Case 3: f(n) = Q(nlosra+e) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(n10g2 3) ~ @(nl.SQ)_

A huge improvement over the “school method”.

6.2 Master Theorem

(© Ernst Mayr, Harald Récke

56

