
7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

x

�

k6

k3

�

�

k7

�

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 203/596

7.7 Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

Such a hash function h is called a perfect hash function for set S.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 204/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n]

=
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n

= e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n

= e−m(m−1)
2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

x

f(x)

f(x) = e−x

g(x) = 1− x

The inequality 1− x ≤ e−x is derived by stopping the

tayler-expansion of e−x after the second term.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 208/596

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining. aka. closed addressing, open

hashing.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 209/596

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

x

�

�

�

�

k1 k4 �

k5 k2 k7 �

k3 �

k8 k6 �

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 210/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined.

The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]keys before ki

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

cost for key ki

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 217/596

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 217/596

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 23
Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 218/596

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 23
Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 218/596

Double Hashing

ñ Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 219/596

Double Hashing

ñ Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 219/596

7.7 Hashing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 220/596

7.7 Hashing

L−

D− L+
D+

α

#probes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 221/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i]

= m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1

= αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

E[X]

=
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i]

≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1

=
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi

= 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 1

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 2

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 3

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 4

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 1

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 2

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 3

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 4

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i

= n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i

= 1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx

= 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m

= 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

x

f(x)

f(x) = 1
x

m−n m−n+ 1 n

1
m−n+1

1
m−n+2 · · · 1

n

n∑
k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 226/596

7.7 Hashing

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 227/596

7.7 Hashing

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 227/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Definition 25
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that Pr[h(u1) = h(u2)] = 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 229/596

7.7 Hashing

Definition 25
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that Pr[h(u1) = h(u2)] = 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 229/596

7.7 Hashing

Definition 26
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

Note that the probability is w. r. t. the choice of a random

hash-function from set H .

This requirement clearly implies a universal hash-function.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 230/596

7.7 Hashing

Definition 26
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

Note that the probability is w. r. t. the choice of a random

hash-function from set H .

This requirement clearly implies a universal hash-function.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 230/596

7.7 Hashing

Definition 27
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 231/596

7.7 Hashing

Definition 28
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
(µ
n
)` ,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 232/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤

Prtx≠ty∈Z2
p

[tx mod n=h1

∧
ty mod n=h2

]

≤
⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 239/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]

= E
[

2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m).

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket.

We only need that the hash-function is universal!!!

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 243/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

x7

x6

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

x6

x7

x6

x1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Algorithm 16 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: rehash() // change table-size and rehash everything
9: Cuckoo-Insert(x)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 246/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6
a7

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6
a7

a8

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a3
a4

a5
a6

a7

a8

a2

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a3

a4
a5

a6
a7

a8

a2

a1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

b1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

b1
b2

b3

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

Observation If we end up in an infinite loop there must exist a

cycle-structure that is active for x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 251/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for

the probability of mapping s + 1 keys (the a-keys, the b-keys and

x) to pre-specified positions in T1, and to pre-specified positions

in T2.

The probability is (µ
n

)s+1 ·
(µ
n

)s+1
,

since h1 and h2 are chosen independently.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 253/596

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for

the probability of mapping s + 1 keys (the a-keys, the b-keys and

x) to pre-specified positions in T1, and to pre-specified positions

in T2.

The probability is (µ
n

)s+1 ·
(µ
n

)s+1
,

since h1 and h2 are chosen independently.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 253/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1)

= s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Cuckoo Hashing

Observation:

If the insert takes t ≥ 4` steps there must either be a left-active or

a right-active sub-sequence of length ` starting with x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 259/596

Cuckoo Hashing

The probability that a given sub-sequence is left-active

(right-active) is at most (µ
n

)2`
,

if we use (µ, `)-independent hash-functions. This holds since

there are ` keys whose hash-values (two values per key) have to

map to pre-specified positions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 260/596

Cuckoo Hashing

The number of sequences is at most m`−1p`+1 as we can choose

` − 1 keys (apart from x) and we can choose ` + 1 positions

p0, . . . , p`.

The probability that there exists a left-active or right-active

sequence of length ` is at most

Pr[there exists active sequ. of length `]

≤ 2 ·m`−1 ·n`+1 ·
(µ
n

)2`

≤ 2
(1

1+ δ
)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 261/596

Cuckoo Hashing

If the search does not run into an infinite loop the probability that

it takes more than 4` steps is at most

2
(1

1+ δ
)`

We choose maxsteps = 4(1+ 2 logm)/ log(1+ δ). Then the

probability of terminating the while-loop because of reaching

maxsteps is only O(1
m2) (O(1/m2) because of reaching an

infinite loop and 1/m2 because the search takes maxsteps steps

without running into a loop).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 262/596

Cuckoo Hashing

The expected time for an insert under the condition that

maxsteps is not reached is∑
`≥0

Pr[search takes at least ` steps | iteration successful]

≤
∑
`≥0

8
(1

1+ δ
)` = O(1) .

More generally, the above expression gives a bound on the cost in

the successful iteration of an insert-operation (there is exactly one

successful iteration).

An iteration that is not successful induces cost O(m) for doing a

complete rehash.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 263/596

Cuckoo Hashing

The expected number of unsuccessful operations is O(1
m2).

Hence, the expected cost in unsuccessful iterations is only O(1
m).

Hence, the total expected cost for an insert-operation is constant.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 264/596

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) it is sufficient to have

(µ,Θ(logm))-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 265/596

Cuckoo Hashing

How do we make sure that n ≥ µ2(1 + δ)m?

ñ Let α := 1/(µ2(1+ δ)).
ñ Keep track of the number of elements in the table. Whenever

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below α
4n we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have m = α
2n.

In order for a table-expand to occur at least α2n insertions

are required. Similar, for a table-shrink at least α4 deletions

must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 266/596

Definition 31
Let d ∈ N; q ≥ n be a prime; and let ~a ∈ {0, . . . , q − 1}d+1. Define

for x ∈ {0, . . . , q}

h~a(x) :=
(d∑
i=0

aixi mod q
)

mod n .

Let Hd
n := {h~a | ~a ∈ {0, . . . , q}d+1}. The class H d

n is

(2, d+ 1)-independent.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 267/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑
i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑
i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑
i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤
(2
n

)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 270/596

	Hashing

