
6 Recurrences

Algorithm 2 mergesort(listL)
1: s ← size(L)
2: if s ≤ 1 return L
3: L1 ← L[1 · · · b s2c]
4: L2 ← L[d s2e · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) ≤ 2T
(⌈n

2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.

EADS

c© Ernst Mayr, Harald Räcke 33

Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.

EADS 6 Recurrences

c© Ernst Mayr, Harald Räcke 34

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.

EADS 6 Recurrences

c© Ernst Mayr, Harald Räcke 35

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
 2T

(⌈n
2

⌉)+ cn n ≥ 2

0 otherwise

Assume that instead we had

T(n) ≤
 2T

(n
2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.

EADS 6.1 Guessing+Induction

c© Ernst Mayr, Harald Räcke 36

6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(n

2
log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
= dn logn

if we choose d ≥ c.

Formally one would make an induction proof, where the above is

the induction step. The base case is usually trivial.

EADS 6.1 Guessing+Induction

c© Ernst Mayr, Harald Räcke 37

6.1 Guessing+Induction

• Note that this proves the
statement for n ∈ N≥2, as the
statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
 2T

(n
2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

ñ base case (2 ≤ n < 16): true if we choose d ≥ b.

ñ induction step 2 . . . n− 1→ n:

Suppose statem. is true for n′ ∈ {2, . . . , n− 1}, and n ≥ 16.

We prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(n

2
log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
= dn logn

Hence, statement is true if we choose d ≥ c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

T(n) ≤
 2T(

⌈n
2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).

EADS 6.1 Guessing+Induction

c© Ernst Mayr, Harald Räcke 39

6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn
≤ dn log

(9
16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
= dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4

EADS 6.1 Guessing+Induction

c© Ernst Mayr, Harald Räcke 40

