6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding

» generating function (Erzeugendenfunktion) is

F(z):= Z anz";
n=0
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6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding

» generating function (Erzeugendenfunktion) is
F(z):= Z anz";
n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is
a
F(z)= > —2zm.

|
n=0 n
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is
F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

F(z)zi.
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6.4 Generating Functions

There are two different views:
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2, panz™and g = >, o bnz".
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2, panz™and g = >, o bnz".

» Equality: f and g are equal if a,, = by, for all n.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2, panz™and g = >, o bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, _o(an + by)z".
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2, panz™and g = >, o bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, _o(an + by)z".

» Multiplication: f - g :=>;)_(cnz™ with ¢ = Zzzo apbn_p.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =2, panz™and g = >, o bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := >, _o(an + by)z".

» Multiplication: f - g :=>;)_(cnz™ with ¢ = ZZZO apbn_p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f: C — C.
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6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.
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6.4 Generating Functions

What does >,/ z" = ﬁ mean in the algebraic view?
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6.4 Generating Functions

What does >.,_z" = i mean in the algebraic view?

It means that the power series 1 — z and the power series
-0 2™ are invers, i.e.,

(1-2)- (gozn) _1
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6.4 Generating Functions

What does >.,_z" = i mean in the algebraic view?

It means that the power series 1 — z and the power series
-0 2™ are invers, i.e.,

(1-2)- (gozn) _1

This is well-defined.

EADS
(© Ernst Mayr, Harald Racke
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6.4 Generating Functions

Suppose we are given the generating function

[o )

1
1-z°

zZ" =
n=0
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6.4 Generating Functions

Suppose we are given the generating function

[o )

1
1-z°

zZ" =
n=0

We can compute the derivative:

n-1 _ 1
Z'I’LZ —(1_2)2

nx=1
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6.4 Generating Functions

Suppose we are given the generating function

[o )

zZ" = !
oo 1-z
We can compute the derivative:
_ 1
>zl = Y]
n=1 -z
\—,—J
So—on+1)zn
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6.4 Generating Functions

Suppose we are given the generating function

(o]
S 2n -

n=0 z
We can compute the derivative:
1
nz"- 1 _
2" Ty
\—,—J

So—on+1)zn

Hence, the generating function of the sequencea, =n+1
is1/(1—-2)2.
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6.4 Generating Functions

We can repeat this
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6.4 Generating Functions

We can repeat this

1

1)z" =
ngo(n+ )z 1

—2)2
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6.4 Generating Functions

We can repeat this

= 1
m+1)z"= — .
ngo (1-2)
Derivative: ’
Z nm+1)z"1 = ——3
nx=1 (1 - Z)
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6.4 Generating Functions

We can repeat this

> 1
m+1)z" = ——— .
ngo (1-2)
Derivative: ’
dnm+1z = ——
n=1 (1-2)
Zﬁzo(n+I)(n+2)z"
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6.4 Generating Functions

We can repeat this

> 1
n+1)z"=—-— .
ngo( ) (1-2)
Derivative: ’
n-1 _
> nn+1)z =023

n=1

. J

Z;"Zo(n+I)(n+2)z"

Hence, the generating function of the sequence
an=Mm+1)(n+2)is ﬁ
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6.4 Generating Functions

Computing the k-th derivative of >’ z".
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6.4 Generating Functions

Computing the k-th derivative of >’ z".

Z nm-1)...n—k+1)z"*k

nx=k
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6.4 Generating Functions

Computing the k-th derivative of >’ z".

dnm-1)...n-k+1)z"k = > (n+k)

nx=k n=0
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6.4 Generating Functions

Computing the k-th derivative of >’ z".

dnm-1)...n-k+1)z"k = > (n+k)

L.n+Dz"

n=k n=0
k!
- (1 —2z)k+1 °
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6.4 Generating Functions

Computing the k-th derivative of >’ z".

dnm-1)...n-k+1)z"k = > (n+k)
nx=k n=0

k!

L.n+1)z"

= (1- Z)k+1 '

Hence:
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6.4 Generating Functions

Computing the k-th derivative of >’ z".

dnm-1)..n-k+1)z" =Y m+k)...n+1)z"
nx=k n=0

k!
(1- Z)k+1 )

Hence:

n+k\ , 1
Z( k )Z _(l—Z)kH'

The generating function of the sequence a, = ("Zk> is !
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6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0

EADS 6.4 Generating Functions
© Ernst Mayr, Harald Racke



6.4 Generating Functions

dDnzl= > (n+1)z" - > "

n=0 n=0 n=0

1 B 1
(1-2)2 1-z
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6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
! 1
T (1-22 1-z
_ z
C(1-2)2
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6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
! 1
T (1-22 1-z
_ z
C(1-2)2
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6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
1 1
T (1-22 1-z
_ 4
- (1-2)2

The generating function of the sequence a,, = n is ﬁ
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6.4 Generating Functions

We know
1
n
> "=
n=0 1-y
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6.4 Generating Functions

We know
1
yht=——
ngo 1- y

Hence,

Z ahz" 1

"0 l1-az
EADS
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6.4 Generating Functions

We know

]
<L
S
I
-

Hence,

The generating function of the sequence f;;, = a™ is

1
l-az*

EADS
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1
and ag = 1.

A(z)
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1
and ag = 1.

A(z) = Z anz"

n=0
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1

and ag = 1.
A(z) = Z anz"
n=0
=ap+ > (an-1+1)z"
n=1
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1
and ag = 1.

A(z) = Z anz"

n=0

=ap+ > (an-1+1)z"
n=1

=1+z> an1z"t+ > z"
nx=1 nx=1
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1

and ag = 1.
A(z) = Z anz"
n=0
=ap+ > (an-1+1)z"
nx=1
=1+z> an1z"t+ > z"
nx=1 nx=1
=z Z anz™ + Z z"
n=0 n=0
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6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1
and ag = 1.

A(z) = Z anz"

n=0

=ap+ > (an-1+1)z"
n=1

=1+z> an1z"t+ > z"
nx=1 nx=1

:zZanz"+Zz"
n=0 n=0

=zA(z)+ > z"

n=0

EADS 6.4 Generating Functions
(© Ernst Mayr, Harald Racke



6.4 Generating Functions

Suppose we have again the recurrence ay, = an-1+ 1 forn =1
and ag = 1.

A(z) = Z anz"

n=0

=ap+ > (an-1+1)z"
n=1

=1+z> an1z"t+ > z"
nx=1 nx=1

:zZanz"+Zz"
n=0 n=0

=zA(z)+ > z"

n=0

=ZzA
z (z)+1_Z
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6.4 Generating Functions

Solving for A(z) gives
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6.4 Generating Functions

Solving for A(z) gives

A(z) = 7(1 sy
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6.4 Generating Functions

Solving for A(z) gives

Z anz" = A(z) =

n=0

(1-2)2
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6.4 Generating Functions
Solving for A(z) gives

1

Zanz ZA(Z)ZWZ

n=0

Z (n+1)z"

n=0
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6.4 Generating Functions
Solving for A(z) gives
1

Z anz"=A(z) = ——— = Z m+1)z"
(1-2)2
n=0 n=0
Hence, an, =n + 1.
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Some Generating Functions

n-th sequence element

generating function
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Some Generating Functions

n-th sequence element

generating function

1
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Some Generating Functions

n-th sequence element generating function
1
1
1-z
1
n+1 —_—
(1-2)2
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Some Generating Functions

n-th sequence element

generating function

1

n+1

(")

1
1-z
_

(1-2)2

_
(1 = z)k+1
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Some Generating Functions

n-th sequence element generating function
1 1
1-z
1
n+1

(1-2)2
(n+k) 1

n (1 _ Z)k“
z

" (1-2)
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Some Generating Functions

n-th sequence element generating function
1 1
1-z
1
n+1  F E———
(1-2)2
(n+k) 1
n (1 _ Z)k“
_z
" (1-2)
an 1
1-az
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Some Generating Functions

n-th sequence element

generating function

1
1-z
_
(1-2)?
1
(1 _ Z)k“
_z
(1-2)?
1
1-az

z(1+2z2)
(1-2)3

EADS
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Some Generating Functions

n-th sequence element generating function
1 1
1-z
1
+1 — =
" (1-2)2
(n+k) 1
n (1 _ Z)k“
_z
" (1-2)
an 1
1-az
n? z(1+2)
(1-2)3
1 z(1+2)
n (1-2)3
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Some Generating Functions

n-th sequence element

generating function
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Some Generating Functions

n-th sequence element

generating function

Cfn

cF
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Some Generating Functions

n-th sequence element generating function
Ccfn cF
Sn+9n F+G
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Some Generating Functions

n-th sequence element generating function
Ccfn cF
Sn+9n F+G
Sito fign-i F-G
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Some Generating Functions

n-th sequence element

generating function

cfn
Jn + gn
Z?:O fign—i

fnx (m=k); Ootw.

cF
F+G
F-G

zkF
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Some Generating Functions

n-th sequence element

generating function

cfn
Jn + gn
Z?:O fign—i

fnx (m=k); Ootw.

i fi

cF
F+G
F-G

ZkF

F(z)
1-z

EADS
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Some Generating Functions

n-th sequence element generating function
Ccfn cF
Sn+gn F+G
Z?:O Sign-i F-G
fak (m=k); 0otw. zkF
St fi Fiz)
1-z
nf 2 dF(z)
dz
EADS 6.4 Generating Functions

(© Ernst Mayr, Harald Racke




Some Generating Functions

n-th sequence element generating function
cfn cF
Sn+ gn F+G
S0 fign-i F-G
fak (m=k); 0otw. ZkF
F(z
Stofi (2)
1-z
nf 2 dF(z)
dz
c" fn F(cz)
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Solving Recursions with Generating Functions

1. Set A(z) = X pus0anz™.
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Solving Recursions with Generating Functions

1. Set A(z) = X pus0anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.
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Solving Recursions with Generating Functions

1. Set A(z) = D psoanz™

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).
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Solving Recursions with Generating Functions

1. Set A(z) = D psoanz™

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.
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Solving Recursions with Generating Functions

1. Set A(z) = D psoanz™

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
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Solving Recursions with Generating Functions

1. Set A(z) = D psoanz™

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
» partial fraction decomposition (Partialbruchzerlegung)
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Solving Recursions with Generating Functions

1. Set A(z) = X pus0anz™.
2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
» lookup in tables
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Solving Recursions with Generating Functions

1. Set A(z) = X pus0anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
» partial fraction decomposition (Partialbruchzerlegung)
» lookup in tables

6. The coefficients of the resulting power series are the a.
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Example: a, = 2a,-1,a0 = 1

1. Set up generating function:
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Example: a, = 2a,-1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0
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Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be plugged
in:
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Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be plugged

in:
A(z) =ap + Z anz"
nx=1
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Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be plugged

in:
A(z) = ag + Z anz"
nx=1
2. Plugin:
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Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be plugged

in:
A(z) =ap + Z anz"
nx=1
2. Plugin:
A(z) =1+ D> (Ran-1)z"
nx=1
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Example: a, = 2a,-1,a0 = 1
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"

nx=1
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"

nx=1

=1+2z > ap1z"!
nx=1
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"
nx=1
=1+2z > ap1z"!
nx=1

=1+222anz”

n=0
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"
nx=1
=1+2z > ap1z"!
nx=1
=1+2z Z anz"
n=0

=1+2z-A(z2)
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"
nx=1
=1+2z > ap1z"!
nx=1
=1+2z Z anz"
n=0

=1+2z-A(z2)

4. Solve for A(z).
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

A(z) =1+ > (ap-1)z"
nx=1
=1+2z > ap1z"!
nx=1
=1+2z Z anz"
n=0

=1+2z-A(z2)

4. Solve for A(z). )

1-2z

A(z) =
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Example: a, = 2a,-1,a0 = 1
5. Rewrite f(n) as a power series:

1

A2) = 1-2z
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Example: a, = 2a,-1,a0 = 1

5. Rewrite f(n) as a power series:

> anz" = A(z) = 1

fvart 1-2z
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Example: a, = 2a,-1,a0 = 1

5. Rewrite f(n) as a power series:

> anz" = A(z) = : _122 = > 2nz"

n=0 n=0
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Example: a, = 3a,-1 + n,ap =1

1. Set up generating function:
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Example: a, = 3a,-1 + n,ap =1

1. Set up generating function:

A(z) = Z anz"

n=0
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Example: a, = 3a,-1 + n,ap =1

2./3. Transform right hand side:
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Example: a, = 3a,-1 + n,ap =1

2./3. Transform right hand side:

A(z) = Z anz"

n=0
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Example: a, = 3a,-1 + n,ap =1
2./3. Transform right hand side:

A(z) = Z anz"

n=0

=ap+ Z anz"
n>1
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Example: a, = 3a,-1 + n,ap =1

2./3. Transform right hand side:

Z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"
nx=1

A(z)
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Example: a, = 3a,-1 + n,ap =1

2./3. Transform right hand side:

Z anz"

n=0
ag + Z anz"
n>1

1+ > (Ban-1 +n)z"
nx=1

A(z)

=1+3z Z an—1z" 1 + Z nz"
nx=1 nx=1
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Example: a, = 3a,_1 + n,ap =1

2./3. Transform right hand side:

A(z) = Z anz"
n=0
=ag+ z anz"
nx=1
=1+ > (3an-1+n)z"
nx>1
=1+3z Z an—1z" 1+ Z nz"
nx=1 nx=1
=1+3z > anz"+ > nz"
n=0 n=0
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Example: a, = 3a,_1 + n,ap =1

2./3. Transform right hand side:

A(z) = Z anz"
n=0
=ag+ z anz"
nx=1
=1+ > (3an-1+n)z"
nx>1
=1+3z Z an—1z" 1+ Z nz"
nx=1 nx=1
=1+3z > anz"+ > nz"
n=0 n=0
—1+32A(z) + —Z
(1-2)2
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Example: a, = 3a,-1 + n,ap =1
4. Solve for A(z):

EADS 6.4 Generating Functions
(@© Ernst Mayr, Harald Racke



Example: a, = 3a,-1 + n,ap =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

_z
(1-z

)2
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Example: a, = 3a,-1 + n,ap =1
4. Solve for A(z):

A(z) =1+ 3zA(z2) +

_z
(1-z

)2

gives
(1-2)°+z
A =
@ =0 350-22
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Example: a, = 3a,-1 + n,ap =1
4. Solve for A(z):

z
A(Z) =1+ BZA(Z) + m
gives
—_ )2 2 _
Az) = (1-2)+z _ zc—z+1
(1-32)1-2)2 (1-32)(1-2)°
EADS 6.4 Generating Functions =] =

© Ernst Mayr, Harald Racke



Example: a, = 3a,-1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
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Example: a, = 3a,-1 + n,ap =1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1
(1-32)(1-2)2
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Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2—z+1 A B

C

(1-32)(1-2)2 - 1—32+1—z
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Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2—z+1 A B

(1-32)(1-2)2 - 1—32+1—z

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
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Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1 A B

C

(1—32)(1—2)2:1—3Z+1—Z+

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1 1
A= Z B = _Z C= —5
EADS 6.4 Generating Functions
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Example: a, = 3a,-1 + n,ap =1

5. Write f(z) as a formal power series:
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Example: a, = 3a,-1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A z)=— - _ . - . =
() 4 1-3z 4 1-z 2 (1-2)2
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Example: a, = 3a,-1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A = — . [ - -
@)=y 1 3 4 1=z 2 (-22
_ z n-n __ 1 n _ l n
=1 Z 3"z 2 z z > Z n+1)z
n=0 n=0 n=0
EADS 6.4 Generating Functions =] F =

(© Ernst Mayr, Harald Racke



Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A - — . _ . _ .=
&= 13z 2 12z 2 (-22
=Z-23"2"— -~ > (n+1Dz"
4 2
n=0 n=0 n=0
_ 7 oan_ 11 n
> (4 1 2(n+ 1))2
n=0
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Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
A - . _ . .=
&= 13z 2 12z 2 (-22
_ DNzt Nzt Y (n+1)2"
4 2
n=0 n=0 n=0
7 n 1 1 n
= Z(Z 3 —Z—E(n—kl))z
n=0
6. This means a, = 23” - %n - %.
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