Amortized Analysis

Definition 32

A data structure with operations op;(),...,0px() has amortized
running times t1,..., tx for these operations if the following
holds.
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Amortized Analysis

Definition 32

A data structure with operations op; (), ...,0p;() has amortized
running times t1,...,tx for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with an
empty data-structre) that operate on at most n elements, and let
k; denote the number of occurences of op; () within this sequence.
Then the actual running time must be at most > ; k;t;(n).
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Potential Method

Introduce a potential for the data structure.
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Potential Method

Introduce a potential for the data structure.

» ®(D;) is the potential after the i-th operation.
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci =¢i +®(D;) —P(Dj-1) .
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci =¢i +®(D;) —P(Dj-1) .

» Show that ®(D;) = ®(Dy).
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci=c¢i+®(D;) - (D) .
» Show that &(D;) = ®(Dy).

Then

k
2. Ci
i=1

This means the amortized costs can be used to derive a bound on
the total cost.
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci =¢i +®(D;) —P(Dj-1) .

» Show that ®(D;) = ®(Dy).

Then
k k
>ci< > ci+®(Dy) — (Do)
i=1 i+1

This means the amortized costs can be used to derive a bound on
the total cost.
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Potential Method

Introduce a potential for the data structure.
» ®(D;) is the potential after the i-th operation.
» Amortized cost of the i-th operation is

Ci =¢i +®(D;) —P(Dj-1) .

» Show that ®(D;) = ®(Dy).

Then
k k k
Dci< > ci+®(Dy) - (Do) = D ¢
i=1 i+1 i=1

This means the amortized costs can be used to derive a bound on
the total cost.
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Example: Stack

Stack
» S.push()
> S.pop()

» S. multipop(k): removes k items from the stack. If the stack
currently contains less than k items it empties the stack.
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Example: Stack

Stack
» S.push()
> S.pop()

» S. multipop(k): removes k items from the stack. If the stack
currently contains less than k items it empties the stack.

Actual cost:
» S.push(): cost 1.
» S.pop(): cost 1.

» S. multipop(k): cost min{size, k}.
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Example: Stack
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

» S.pop(): cost
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

Cpush = Cpush + AP =1+1 <2 .
» S.pop(): cost

Cpop = Cpop + AP =1-1<0 .
» S. multipop(k): cost

Cmp = Cmp + A® = min{size, k} — min{size,k} <0 .
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

» Increment: cost is k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).
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Example: Binary Counter
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the number
of ones in the binary representation of x.

Amortized cost:
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the number
of ones in the binary representation of x.

Amortized cost:
» Changing bit from O to 1: cost

Coo1=Co1+AP=1+1<2.
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the number
of ones in the binary representation of x.

Amortized cost:
» Changing bit from O to 1: cost

Coo1=Co1+AP=1+1<2.
» Changing bit from 1 to 0: cost 0.

CA‘1_,0:C1_.()+A<D=1—150.
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Example: Binary Counter

Choose potential function ®(x) = k, where k denotes the number
of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1: cost

Co1=Co1+ADP=1+1<2.
» Changing bit from 1 to 0: cost 0.
CA‘l_,():Cl_.()-I-ACD:l—lSO .

» Increment. Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kélqo + C’oql < 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.

parent

left X right
child
a b (<) d

= —/
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8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.

parent

left X right
child
a b (<)

= —/

o
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8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
» A parent-pointer points to the parent node.

parent

left X right
child
o)
a B0 d
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8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
» A parent-pointer points to the parent node.

» Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

parent

left X right
child
o)
a B0
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8.3 Fibonacci Heaps

» Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a nhode x in constant time if we
are given a pointer to x and a pointer to the root of T.
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8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x.marked that specifies
whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:
» t(S) denotes the number of trees in the heap.
» m(S) denotes the number of marked nodes.
» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S. minimum ()

» Access through the min-pointer.
Actual cost O(1).

\ 4

v

No change in potential.

v

Amortized cost O(1).
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8.3 Fibonacci Heaps

S.merge(S’)
» Merge the root lists.

» Adjust the min-pointer

g @ 62 @9 @9 D) @
&9 @9 D
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8.3 Fibonacci Heaps

S.merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).

EADS 8.3 Fibonacci Heaps
(© Ernst Mayr, Harald Racke



8.3 Fibonacci Heaps

S.merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
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8.3 Fibonacci Heaps

S.merge(S’)
» Merge the root lists.

» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.

» Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)

» Create a new tree containing x.
» Insert x into the root-list.

» Update min-pointer, if necessary.

8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps

S. insert(x)

» Create a new tree containing x.
» Insert x into the root-list.

» Update min-pointer, if necessary.
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8.3 Fibonacci Heaps

S. insert(x)

» Create a new tree containing x.
» Insert x into the root-list.

» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(o] (P ? (o]
current ))
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8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(o] (P ? (o]
current ))
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8.3 Fibonacci Heaps

Consolidate:

current =
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8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
PIPITI®
current g‘/'/
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current =
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8.3 Fibonacci Heaps

Consolidate:

current =

>17,

G9

EADS 8.3 Fibonacci Heaps
(© Ernst Mayr, Harald Racke



8.3 Fibonacci Heaps

Consolidate:

9 9
current N
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8.3 Fibonacci Heaps

Consolidate:

9 9
current \ -/
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8.3 Fibonacci Heaps

Consolidate:

9 9
current \ -/
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

The amortized cost is

v
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

The amortized cost is

v
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

The amortized cost is

v

c1-Dp+t)—c-(t-Dp-1)
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

The amortized cost is

v

c1-Dp+t)y—c-(t—Dyp—-1)
<(c1+c)Dyp+(c1 —c)t+c
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

v

The amortized cost is

c1-Dp+t)y—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

v

The amortized cost is

c1-Dp+t)y—c-(t—Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)
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8.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (Dy, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.
Therefore A® <D, +1-t;
» We can pay ¢ - (t — D, — 1) from the potential decrease.

v

v

The amortized cost is
ci1-Dp+t)—c-(t—-Dy—-1)

<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc=cy .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then
Dy, <logn.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

» Just decrease the key-value of element referenced by h.
Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

» Just decrease the key-value of element referenced by h.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

» Just decrease the key-value of element referenced by h.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

» Just decrease the key-value of element referenced by h.
Nothing else to do.

EADS 8.3 Fibonacci Heaps
(© Ernst Mayr, Harald Racke



Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.

» If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x.
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make x into a root.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
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make x into a root.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.

» If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.
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node.
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Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

» Execute the following:
p — parent[x];
while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp,
if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

» Constant cost for decreasing the value.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.

» Constant cost for each of £ cuts.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

» Constant cost for decreasing the value.

» Constant cost for each of ¢ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.
Amortized cost:

» t'=t+4,as every cut creates one new root.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

» Constant cost for decreasing the value.

» Constant cost for each of ¢ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.
Amortized cost:

» t'=t+4,as every cut creates one new root.

»m' <m—-{L-1)+1=m-¥L+2, since all but the first cut
marks a node; the last cut may mark a node.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

» Constant cost for decreasing the value.

» Constant cost for each of ¢ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.
Amortized cost:

» t'=t+4,as every cut creates one new root.

»m' <m—-{L-1)+1=m-¥L+2, since all but the first cut
marks a node; the last cut may mark a node.

» Ab <l +2(—4+2)=4-7¢

EADS 8.3 Fibonacci Heaps
(© Ernst Mayr, Harald Racke



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of ¢ cuts.
» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.

Amortized cost:

v

t'=t+7,as every cut creates one new root.

v

m <m-{E-1)+1=m-4+2, since all but the first cut
marks a node; the last cut may mark a node.
AP <l +2(—4+2)=4-20

Amortized cost is at most

v

\4
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of ¢ cuts.
» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.

Amortized cost:

v

t'=t+7,as every cut creates one new root.

v

m <m-{E-1)+1=m-4+2, since all but the first cut
marks a node; the last cut may mark a node.
AP <l +2(—4+2)=4-20

Amortized cost is at most

v

\4

ol +1)+c4-10)
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of ¢ cuts.
» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.

Amortized cost:

v

t'=t+7,as every cut creates one new root.

v

m <m-{E-1)+1=m-4+2, since all but the first cut
marks a node; the last cut may mark a node.
AP <l +2(—4+2)=4-20

Amortized cost is at most

v

\4

@ +1)+c(4-20) <(co—c)l +4c
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of ¢ cuts.
» Hence, cost is at most ¢» - (£ + 1), for some constant ¢>.

Amortized cost:

v

t'=t+7,as every cut creates one new root.

v

m <m-{E-1)+1=m-4+2, since all but the first cut
marks a node; the last cut may mark a node.
AP <l +2(—4+2)=4-20

Amortized cost is at most

v

\4

@+ +cd-0)<(cp—c)l+4c=0(),

if c > Co.
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Delete node

H. delete(x):
» decrease value of x to —co.

» delete-min.

Amortized cost: O(D(n))
» O(1) for decrease-key.
» O(D(n)) for delete-min.
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8.3 Fibonacci Heaps

Lemma 33
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

4 v 0 ifi=1
egree i) =

BICEII=0 1 2 fi=1
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8.3 Fibonacci Heaps

Proof
» When y; was linked to x, at least y1,...,y;—1 were already
linked to x.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,»;—1 were already
linked to x.

» Hence, at this time degree(x) = i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,»;—1 were already
linked to x.

» Hence, at this time degree(x) = i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,»;—1 were already
linked to x.

» Hence, at this time degree(x) = i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.
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8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
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8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k

EADS 8.3 Fibonacci Heaps
(© Ernst Mayr, Harald Racke



8.3 Fibonacci Heaps
> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and sy = 2.
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8.3 Fibonacci Heaps
> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
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8.3 Fibonacci Heaps
> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
k
>2+ Z Si—2
i=2
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8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

» s, monotonically increases with k
» so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
k
>2+ Z Si—2

i=2

k-2
=2+ Z Si

i=0
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8.3 Fibonacci Heaps

Definition 34
Consider the following non-standard Fibonacci type sequence:
1 ifk=0
Fp=4 2 ifk=1

Fpr1+Fy o ifk=2

Facts:
1. Fr = ¢k.
2. Fork=2: Fr =2+ SK¢2F.
The above facts can be easily proved by induction. From this it

follows that sx > Fx > ¢¥, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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