
Amortized Analysis

Definition 32
A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with an

empty data-structre) that operate on at most n elements, and let

ki denote the number of occurences of opi() within this sequence.

Then the actual running time must be at most
∑
i kiti(n).
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Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑
i=1

ci ≤
k∑
i+1

ci + Φ(Dk)− Φ(D0) =
k∑
i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.
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ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑
i=1

ci ≤
k∑
i+1

ci + Φ(Dk)− Φ(D0) =
k∑
i=1

ĉi
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Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the stack

currently contains less than k items it empties the stack.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k}.
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Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .
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Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost
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Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 309/596



Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).
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Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft
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8.3 Fibonacci Heaps

ñ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

ñ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .
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8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).
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The potential is Φ(S) = 5+ 2 · 3 = 11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.minimum()

ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).
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8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer
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• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps
x is inserted next to the min-pointer as
this is our entry point into the root-list.

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.
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x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).
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8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)

ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).
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ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:
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8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.
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Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.
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ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.
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ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596



Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.
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Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596



Fibonacci Heaps: decrease-key(handle h, v)

Marking a node can be viewed as a
first step towards becoming a root.
The first time x loses a child it is
marked; the second time it loses a
child it is made into a root.

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 326/596



Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.
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Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(D(n))
ñ O(1) for decrease-key.

ñ O(D(n)) for delete-min.
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8.3 Fibonacci Heaps

Lemma 33
Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥

 0 if i = 1

i− 2 if i ≥ 1

The marking process is very important for the proof of
this lemma. It ensures that a node can have lost at most
one child since the last time it became a non-root node.
When losing a first child the node gets marked; when
losing the second child it is cut from the parent and
made into a root.
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8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.
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8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑
i=2

size(yi)

≥ 2+
k∑
i=2

si−2

= 2+
k−2∑
i=0

si
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8.3 Fibonacci Heaps

Definition 34
Consider the following non-standard Fibonacci type sequence:

Fk =


1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+

∑k−2
i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 332/596


	Fibonacci Heaps

