8.2 Binomial Heaps

) . Binomial Fibonacci
Operation Binary Heap BST Heap Heap’
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1
EADS

© Ernst Mayr, Harald Racke

288



Binomial Trees

Bo By B>
3 ﬁ

B3 By

By

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 289



Binomial Trees

Properties of Binomial Trees

v

Bi has 2k nodes.
By has height k.
The root of By has degree k.

v

v

v

By has (%) nodes on level £.

v

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

Deleting the root of By gives trees By, By, ...

290



Binomial Trees

B
B>
B3

By

Deleting the root of Bs leaves sub-trees Bs, B3, B2, and Bj.

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

Bo

291



Binomial Trees

Bg

o (1) //Q_
O| OO0 O 0O O

gég gég e

The number of nodes on level £ in tree By is therefore
k-1 N k-1\ [k
-1 { Y

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke



Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b1, by is obtained by
setting the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 293



8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
» A parent-pointer points to the parent node.

» Pointers x.left and x.right point to the left and right sibling
of x (if x does not have children then x.left = x.right = x).

parent

left X right
child
o)
C B0

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 294



Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example
the above heap contains trees By, By, and Bj.

EADS 8.2 Binomial Heaps

© Ernst Mayr, Harald Racke 295



Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bks, ki < ki4+1 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3; 2k must hold. But since the k; are all distinct this
means that the k; define the non-zero bit-positions in the dual
representation of n.

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 296



Binomial Heap

Properties of a heap with n keys:

>

>

>

>

Letn = bgbi_1,...,bo denote the dual representation of n.
The heap contains tree B; iff b; = 1.

Hence, at most [logn ] + 1 trees.

The minimum must be contained in one of the roots.

The height of the largest tree is at most [logn|.

The trees are stored in a single-linked list; ordered by
dimension/size.

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 297



Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with :',\]o't; that we do not just do a !
different binomial trees. We can simply concatenation as we want to

h I | keep the trees in the list
merge the tree-lists. sorted according to size.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

1
L

Merging two trees of the same size: Add (2)
the tree with larger root-value as a child to
g & @
the other tree.
® © ©
For more trees the technique is analogous @2
to binary addition.

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 298



®




8.2 Binomial Heaps

S1.merge(S>2):
» Analogous to binary addition.
» Time is proportional to the number of trees in both heaps.

» Time: O(logn).

EADS 8.2 Binomial Heaps
(© Ernst Mayr, Harald Racke

300



8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):

» Create a new heap S’ that contains just the element x.

» Execute S.merge(S’).

» Time: O(logn).

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

301



8.2 Binomial Heaps

S.minimum():
» Find the minimum key-value among all roots.

» Time: O(logn).

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

302



8.2 Binomial Heaps

S.delete-min():

|

>

>

Find the minimum key-value among all roots.
Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)
trees).

Compute S.merge(S’).
Time: O(logn).

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 303



8.2 Binomial Heaps

S.decrease-key(handle h):
» Decrease the key of the element pointed to by h.
» Bubble the element up in the tree until the heap property is
fulfilled.
» Time: O(logn) since the trees have height O(logn).

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke 304



8.2 Binomial Heaps

S.delete(handle h):
» Execute S.decrease-key(h, —).
» Execute S.delete-min().

» Time: O(logn).

EADS 8.2 Binomial Heaps
© Ernst Mayr, Harald Racke

305



	Binomial Heaps

