A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let 7 = {P1,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M<—MGB(P1U---UPk)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
» The connected components of G are cycles and paths.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist

IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k ¢ |[M*| — [M| more red edges than
blue edges.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

|

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are augmenting
paths w.r.t. M.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

Lemma 99
Theset A<Mae (M @®P)=(PLU---UPy)®P contains at least

(k + 1)¥ edges.
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Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.
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Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.
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Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.

» Each of these paths is of length at least £.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.

» Hence, |A| < k€ + |P| - 1.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

>

If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

This edge is not contained in A.

Hence, |A| < k€ + |P| - 1.

The lower bound on |A| gives (k +1)f < |A| < k€ + |P| -1,
and hence |P| > ¥ + 1.
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Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges
then the cardinality of the maximum matching is of size at most

IM + |2k
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Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most

IM + |2k

Proof.
The symmetric difference between M and M* contains |[M*| — M|

vertex-disjoint augmenting paths. Each of these paths contains at

least £ + 1 vertices. Hence, there can be at most }% of them.
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Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.
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Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration |+/|V]] the length of a shortest augmenting
path must be at least |[/|V]] +1 = /|V].

» Hence, there can be at most |V |/(y/|V|+ 1) < /|V]|
additional augmentations.
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Analysis

Lemma 102
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).
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