
Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 565

Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in the

tight subgraph (because for a perfect matching we need to

find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 566

Analysis

ñ The current matching does not have any edges from Vodd to

outside of L \ Veven (edges that may possibly deleted by

changing weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we otain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

EADS 21 Weighted Bipartite Matching

c© Ernst Mayr, Harald Räcke 567

A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 568

Analysis

Lemma 98
Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting paths.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in this

graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a blue edge. These are augmenting

paths w.r.t. M.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 569

Analysis

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 99
The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 570

Analysis

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 571

Analysis

Lemma 100
P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows from

the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 572

Analysis

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M + | |V |`+1 .

Proof.

The symmetric difference between M and M∗ contains |M∗|− |M|
vertex-disjoint augmenting paths. Each of these paths contains at

least ` + 1 vertices. Hence, there can be at most |V |
`+1 of them.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 573

Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2

√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 574

Analysis

Lemma 102
One phase of the Hopcroft-Karp algorithm can be implemented in

time O(m).

EADS 22 The Hopcroft-Karp Algorithm

c© Ernst Mayr, Harald Räcke 575

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w is
called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.

EADS 23 Maximum Matching in General Graphs

c© Ernst Mayr, Harald Räcke 576

