Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

565

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Vodadl = IT(Veven) | < |Vevenl, and all odd vertices are
saturated in the current matching.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Récke

566

Analysis

» The current matching does not have any edges from Vgq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veven to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.
» In total we otain a running time of @(n?).

» A more careful implementation of the algorithm obtains a
running time of ©(n3).

EADS 21 Weighted Bipartite Matching
© Ernst Mayr, Harald Racke

567

A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)

" M~<0

2: repeat

3 let P = {Py,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~M&PLU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Récke

568

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |[M| more red edges than
blue edges.

» Hence, there are at least k components that form a path
starting and ending with a blue edge. These are augmenting
paths w.r.t. M.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke 569

Analysis

» Let Pq,..., Py be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»MEMo(PiU---UPy)=MoP1®---oPy.

» Let P be an augmenting path in M’.

Lemma 99
The setA< Mo (M ®P)=(P1U---UPy)®P contains at least
(k + 1) edges.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Récke

570

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |M| + k + 1.

» Each of these paths is of length at least £.

EADS 22 The Hopcroft-Karp Algorithm
© Ernst Mayr, Harald Racke 571

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k€ + |P| — 1.

» The lower bound on |A| gives (k + 1)¥ < |A| < k¥ + |P| -1,
and hence |P| =¥ + 1.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Récke

572

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most
vl

M + |€+1'

Proof.

The symmetric difference between M and M* contains |[M*| — |[M|

vertex-disjoint augmenting paths. Each of these paths contains at
V]

Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration [/|V]] the length of a shortest augmenting
path must be at least [/|]V]| + 1 = {/|V].

» Hence, there can be at most |V|/({/|V] + 1) < /|V|
additional augmentations.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Récke

574

least £ + 1 vertices. Hence, there can be at most v of them.
EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke 573
Analysis
Lemma 102
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).
EADS 22 The Hopcroft-Karp Algorithm

© Ernst Mayr, Harald Racke

575

How to find an augmenting path?

Construct an alternating tree.

/C O

even nodes
odd nodes

v is already contained
in T as an even vertex

G) o4
O Oy

O
O
Case 4:
O
O

can’t ignore y

The cycle w « vy —x < w is
called a blossom.

w is called the base of the
blossom (even nodel!l!).

The path u-w path is called
the stem of the blossom.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Récke

576

