Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching
📙 🛄 🗋 💿 Ernst Mayr, Harald Räcke	

Analysis

- The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

Analysis

How do we find S?

EADS © Ernst Mayr, Harald Räcke

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching	
🛛 💾 🗋 🕻 🕲 Ernst Mayr, Harald Räcke		566

We call one iteration of the repeat-loop a phase of the algorithm.

565

Analysis

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of G are cycles and paths.
- The graph contains $k \leq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

EADS © Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm
🛛 💾 🛛 🗋 © Ernst Mayr, Harald Räcke	

Analysis

Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. *M* as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Analysis

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

22 The Hopcroft-Karp Algorithm EADS C Ernst Mayr, Harald Räcke

Analysis

Lemma 100

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

EADS

- If *P* does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ► Hence, $|A| \le k\ell + |P| 1$.
- The lower bound on |A| gives $(k+1)\ell \leq |A| \leq k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

22 The Hopcroft-Karp Algorithm

571

569

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M + |\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

EADS © Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm

Analysis

Lemma 102

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

EADS © Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

575

573

Analysis

Lemma 101

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

EADS C Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

574

