What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

EADS © Ernst Mayr, Harald Räcke

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

▶ ...

How do you measure?

Implementing and testing on representative inputs

- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- ► Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O (n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Q(n log n) comparisons in the worst

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- ► Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O (n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Q(n,log n) comparisons in the worst

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O\left(n^2\right)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Q(n,log n) comparisons in the worst

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- ► Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O (n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Q(n,log n) comparisons in the worst

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O (n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O(n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time O(n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - ► Gives asymptotic bounds like "this algorithm always runs in time O(n²)".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

EADS © Ernst Mayr, Harald Räcke

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits).
- The number of arguments.

le li

Suppose minumbers from the interval {1,...., N} have to be sorted. In this case we usually say that the input length is mi instead of e.g. m log N; which would be the number of bits required to encode the input.

4 Modelling Issues

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 18/596

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

the size of the input (number of bits).

the number of arguments

le l

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is ninstead of e.g. $n \log N$, which would be the number of bits required to encode the input.

4 Modelling Issues

▲ □ ▶ ▲ 酉 ▶ ▲ 필 ▶ ▲ 필 ▶
18/596

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is ninstead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose *n* numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is *n* instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

How to measure performance

- simplified, idealized model of computation, e.g. Randomus Assess Machine (RAM). Turing Machine (TM)
- Calculate number of certain basic operations: comparisons, multiplications; harddisc accesses,

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

How to measure performance

- 1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

© Ernst Mavr. Harald Räcke

Very simple model of computation. ►

© Ernst Mavr. Harald Räcke

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.

© Ernst Mavr. Harald Räcke

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have guadratic lower bound.

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have guadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers R[0], R[1], R[2],
- Registers hold integers.
- Indirect addressing.

4 Modelling Issues

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 21/596

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers R[0], R[1], R[2],
- Registers hold integers.
- Indirect addressing

4 Modelling Issues

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 21/596

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers R[0], R[1], R[2],
- Registers hold integers.
- Indirect addressing

4 Modelling Issues

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 21/596

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers R[0], R[1], R[2],
- Registers hold integers.
- Indirect addressing.

4 Modelling Issues

▲ □ ▶ ▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 21/596

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations $(R[i] \rightarrow \text{output tape})$
- register-register transfers
 - $\rightarrow R[j] := R[j]$
 - ► **R[j]** := 4
- indirect addressing
 - > R[j] := R[R[i]]
 - loads the content of the register number $\mathcal{R}[t]$ into registered a uniber $\mathcal{R}[t]$

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
- register-register transfers
 - $\sim R[j] := R[i]$
 - R[j] := 4
- indirect addressing
 - > R[j] := R[R[i]]
 - loads the content of the register number $\mathcal{R}[\ell]$ into registered a uniber $\mathcal{R}[\ell]$ into registered as a set of the register of the registe

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ▶ WRITE *i*
- register-register transfers

- indirect addressing
 - > R[j] := R[R[i]]
 - loads the content of the register number $\mathbb{R}[\ell]$ into registered aumber $\mathcal{R}[\ell]$

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - WRITE i
- register-register transfers

- indirect addressing
 - > R[j] := R[R[i]]
 - loads the content of the register number $\mathbb{R}[i]$ into registered number j

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ► WRITE *i*
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - $\blacktriangleright R[j] := 4$
- indirect addressing
 - > R[j] := R[R[i]]
 - loads the content of the register number $\mathbb{R}[i]$ into registered a uniber j

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ► WRITE *i*
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - \triangleright R[j] := 4
- indirect addressing
 - R[j] := R[R[i]]
 - loads the content of the register number $\mathcal{R}[t]$ into register number $\mathcal{R}[t]$

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ► WRITE *i*
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - R[j] := 4
- indirect addressing
 - R[j] := R[R[i]
 - loads the content of the register number $\mathcal{R}[t]$ into registered at the content of the register of the register $\mathcal{R}[t]$ into registered at the register of the register o

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations $(R[i] \rightarrow \text{output tape})$
 - ► WRITE *i*
- register-register transfers
 - R[j] := R[i]
 - R[j] := 4
- indirect addressing
 - $\blacktriangleright R[j] := R[R[i]]$

loads the content of the register number R[i] into register number j

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ► WRITE *i*
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - R[j] := 4
- indirect addressing
 - R[j] := R[R[i]]
 loads the content of the register number R[i] into register
 number j

Operations

branching (including loops) based on comparisons

▶ jump x

- jumps to position x in the program;
- sets instruction counter to *x*;
- reads the next operation to perform from register R[x]
- jumpz x R[i] jump to x if R[i] = 0 if not the instruction counter
 - if not the instruction counter is increased by 1;

jumpi i jump to R[i] (indirect jum

- ▶ arithmetic instructions: +, -, ×, /
 - R[i] := -R[k];

Operations

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 jumpz x R[i]
 - jump to *x* if *R*[*i*] = 0 if not the instruction counter is increased
 - ▶ jumpi i

jump to *R*[*i*] (indirect jump);

▶ arithmetic instructions: +, -, ×, /

R[i] := -R[k];

Operations

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 jumpz x R[i]
 - jump to x if R[i] = 0

if not the instruction counter is increased by 1;

```
jumpi i
jump to R[i] (indirect jump)
```

```
▶ arithmetic instructions: +, -, ×, /
```

Operations

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 jumpz x R[i] jump to x if R[i] = 0

if not the instruction counter is increased by 1;

- jumpi i jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, ×, /

Operations

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 jumpz x R[i]
 - jump x R[i]jump to x if R[i] = 0

if not the instruction counter is increased by 1;

► jumpi*i*

jump to *R*[*i*] (indirect jump);

▶ arithmetic instructions: +, -, ×, /

```
 R[i] := R[j] + R[k]; 
R[i] := -R[k];
```

Operations

- branching (including loops) based on comparisons
 - jump x
 jumps to position x in the program;
 sets instruction counter to x;
 reads the next operation to perform from register R[x]
 jumpz x R[i]
 - jumpz x R[i]
 jump to x if R[i] = 0

if not the instruction counter is increased by 1;

- jumpi i jump to R[i] (indirect jump);
- ► arithmetic instructions: +, -, ×, /

- uniform cost model
 Every operation takes time 1.
- Iogarithmic cost model The cost depends on the content of memory cells: The storage space of a register is equal to the length (in bits of the largest value even stored in it.)

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

- uniform cost model
 Every operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed w, where usually $w = \log_2 n$.

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

running time:

space requirement:

4 Modelling Issues

▲ □ ▶ ▲ 酉 ▶ ▲ 클 ▶ ▲ 클 ▶
 25/596

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

running time:

- uniform model: n steps
- logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - \sim uniform model: $\mathcal{O}(1)$
 - \sim logarithmic model: $O(2^{n})$

EADS © Ernst Mayr, Harald Räcke

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

running time:

- uniform model: n steps
- logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:

» logarithmic model: O(2ⁿ)

EADS © Ernst Mayr, Harald Räcke

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$

space requirement:

logarithmic model: (22)

EADS © Ernst Mayr, Harald Räcke

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - logarithmic model: $\mathcal{O}(2^n)$

EADS © Ernst Mayr, Harald Räcke

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - logarithmic model: $\mathcal{O}(2^n)$

EADS © Ernst Mayr, Harald Räcke

Example 2

Algorithm 1 RepeatedSquaring(n)1: $r \leftarrow 2$;2: for $i = 1 \rightarrow n$ do3: $r \leftarrow r^2$ 4: return r

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - logarithmic model: $\mathcal{O}(2^n)$

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

 $C_{wc}(n) := \max\{C(x) \mid |x| = n\}$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\text{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{\rm wc}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{\rm WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{\rm WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

• amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with |x| = n.

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with |x| = n.

