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3 Goals

» Gain knowledge about efficient algorithms for important
problems, i.e., learn how to solve certain types of problems
efficiently.

» Learn how to analyze and judge the efficiency of algorithms.

» Learn how to design efficient algorithms.
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4 Modelling Issues

What do you measure?
» Memory requirement
» Running time
» Number of comparisons
» Number of multiplications
» Number of hard-disc accesses
» Program size

» Power consumption
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4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
Very reliable results if done correctly.
Results only hold for a specific machine and for a specific set
of inputs.

v
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» Theoretical analysis in a specific model of computation.
» Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
» Typically focuses on the worst case.
» Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the worst
case’.

EADS 4 Modelling Issues
(© Ernst Mayr, Harald Récke




4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N - N
that maps the input length to the running time (or storage space,
comparisons, multiplications, program size etc.).

The input length may e.g. be
» the size of the input (number of bits)

» the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.

EADS 4 Modelling Issues
(© Ernst Mayr, Harald Racke

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.
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Turing Machine

» Very simple model of computation.

» Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower
bound.

=> Not a good model for developing efficient algorithms.
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Random Access Machine (RAM)

» Input tape and output tape (sequences of zeros and ones;
unbounded length).

» Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

» Registers hold integers.  input tape —>  memory
» Indirect addressing. ~)[1]0 TIOJOTT ™ [ ko
R[1]
R[2]
control
unit R[3]
R[4]
R[5]
T eyl 1 11 L1 L 0 I
i picture on the right | output tape —
:the tapes are one-directional, and that
1a READ- or WRITE-operation always ad-:
| vances its tape. :
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Random Access Machine (RAM)

Operations
» input operations (input tape — R[i])
» READ i
» output operations (R[i] — output tape)
» WRITE i
» register-register transfers
» R[j] := R[i]
» R[j] := 4
» indirect addressing
» R[j] := R[R[i]]
loads the content of the register number R[i] into register
number j
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program,;
sets instruction counter to x;
reads the next operation to perform from register R[x]
» jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[i] (indirect jump);
» arithmetic instructions: +, —, X, /

1
1

> R[i] := R[j] + RI[k];
Rii] = -RIk]; | The jump-directives are very close to the
:jump—instructions contained in the as—:
: sembler language of real machines.
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Model of Computation

» uniform cost model
Every operation takes time 1.
» logarithmic cost model
The cost depends on the content of memory cells:

» The time for a step is equal to the largest operand involved;
» The storage space of a register is equal to the length (in bits)
of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed w, where usually w = log, n.

:The latter model is quite realistic as the word-size of:
1 a standard computer that handles a problem of size n
| must be at least log, 1 as otherwise the computer could '
: either not store the problem instance or not address all :

ts memory. !
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-ndo

3: ¥ — 7?2

4: return r

> running time:

» uniform model: n steps

» logarithmic model: 1 +2 +4 4 ... +2n =2n*l _1 = @(2")
> space requirement:

» uniform model: O(1)
» logarithmic model: O(2")
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There are different types of complexity bounds:
» best-case complexity:

Coc(n) := min{C(x) | [x| = n}
Usually easy to analyze, but not very meaningful.
» worst-case complexity:
Cwe(n) := max{C(x) | [x] = n}
Usually moderately easy to analyze; sometimes too
pessimistic.

» average case complexity:
1

Cavg(n) =T Z C(x) fmmmmmm e = .
| n| Ix|=n 'C(x) cost of instance:
1 1
i x

more general: probability measure u | x| Input length of!

1 instance x
Cavg(n) := Z pu(x) - C(x) i ;o set of instances,

xely ' 7" of length n
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There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

» randomized complexity:
The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.

EADS 4 Modelling Issues
(© Ernst Mayr, Harald Récke

26

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymtotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

» A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.
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Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.
» O(f) ={g13c>03anpeNgVn=no: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)
» Q(f) ={glIc>0TnpeNgVn=ng: [gin) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)
» O(f) =Qf) no(f)

(functions that asymptotically have the same growth as f)
»o(f) ={g|Ve>03dnpeNygVnz=ng: [gn) <c-f(n)l}
(set of functions that asymptotically grow slower than f)

» w(f)={g|Vc>0TIngeNgVn=np: [gn) =c-f(n)l}

(set of functions that asymptotically grow faster than f)
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