Mincost Flow
Consider the following problem:
min >, c(e)f(e)

st. VeeE: 0< f(e) <ul(e)
YveV: f()=b)
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Consider the following problem:
min >, c(e)f(e)

st. VeeE: 0< f(e) <ul(e)
YveV: f()=b)

» G = (V,E) is an oriented graph.

» u:E - [R{ar U {oo} is the capacity function.

EADS 15 Mincost Flow
(© Ernst Mayr, Harald Racke



Mincost Flow
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» G = (V,E) is an oriented graph.
» u:E - [R{ar U {oo} is the capacity function.

» c:E — R is the cost function (note that c(e) may be
negative).
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Mincost Flow

Consider the following problem:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
YveV: f()=b)

» G = (V,E) is an oriented graph.
» u:E - [R{ar U {oo} is the capacity function.

» c:E — R is the cost function (note that c(e) may be
negative).

b:V -R,>,cyb(v)=0is ademand function.
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Solve Maxflow Using Mincost Flow
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Solve Maxflow Using Mincost Flow
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» Given a flow network for a standard maxflow problem.
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Solve Maxflow Using Mincost Flow

» Given a flow network for a standard maxflow problem.
» Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.
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Solve Maxflow Using Mincost Flow
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» Given a flow network for a standard maxflow problem.

» Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.

» Add an edge from t to s with infinite capacity and cost —1.
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Solve Maxflow Using Mincost Flow

Given a flow network for a standard maxflow problem.

Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.

Add an edge from t to s with infinite capacity and cost —1.
Then, val(f*) = — cost(fmin), Where f* is a maxflow, and
fmin is @ mincost-flow.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and a
value k.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and a
value k.

» Set b(v) = 0 for every node apart from s or t. Set b(s) = —k
and b(t) = k.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and a
value k.

» Set b(v) = 0 for every node apart from s or t. Set b(s) = —k
and b(t) = k.

» Set edge-costs to zero, and keep the capacities.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and a
value k.

» Set b(v) = 0 for every node apart from s or t. Set b(s) = —k
and b(t) = k.

» Set edge-costs to zero, and keep the capacities.

» There exists a maxflow of value k if and only if the
mincost-flow problem is feasible.
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Generalization
Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
VvveV: f(v)=bw)

where b:V - R, >, b(v) =0; u:E - RjU{co}; c:E - R;
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Generalization
Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
YveV: f(v)=b)

where b:V - R, >, b(v) =0; u:E - RjuU{o}; c:E—R;

A more general model?

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
VveV: alw) < f(v) <b)

wherea:V-R,b:V -R;£:E-RU{-c0}, u:E— RU {oo}
c.:E-R;
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Reduction |
min > ,c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
VveV: alv) < f(v) <bw)

We can assume that a(v) = b(v):

Add new node 7.
Add edge (r,v) forallv e V.

Set £(e) = c(e) = 0 for these
edges.

Set u(e) = b(v) —a(v) for
edge (7,v).

Seta(v) =b(v) forallv e V.

Set b(r) =X ,ev b(v).




Reduction Il
min > ,c(e)f(e)
s.t. VeecE: fe) < f(e) <ule)
VveV: f(v)=b)

We can assume that either £(e) # —o or u(e) = :

If c(e) = 0 we can simply contract the edge/identify nodes u and
v
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Reduction Il
min > ,c(e)f(e)
s.t. VeecE: fe) < f(e) <ule)
YveV: f(v)=b)

We can assume that £(e) # —oo:

u (v
O u(e)=d + o O
l(e) =—o0
cle)=a
u)< v
O u(e)=co O
l(e)=—d
cle)=-a

Replace the edge by an edge in opposite direction.
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Reduction IV

min >, c(e)f(e)
s.t. VeecE: fe) < f(e) <ule)
YveV: f(v)=b)

We can assume that £(e) = 0:

u (v
@ u(e) >©
l(e)=d + o

c(e)
b0 =
@,@ (v
ue) —d
l(e) =0
c(e)

The added edges have infinite capacity and cost c(e)/2.
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Applications

Caterer Problem

» She needs to supply 7; napkins on N successive days.
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Applications

Caterer Problem
» She needs to supply 7; napkins on N successive days.
» She can buy new napkins at p cents each.

» She can launder them at a fast laundry that takes m days and
cost f cents a napkin.
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Applications

Caterer Problem
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She needs to supply 7; napkins on N successive days.
She can buy new napkins at p cents each.

She can launder them at a fast laundry that takes m days and
cost f cents a napkin.

She can use a slow laundry that takes k > m days and costs s
cents each.
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Applications

Caterer Problem
» She needs to supply 7; napkins on N successive days.
» She can buy new napkins at p cents each.

» She can launder them at a fast laundry that takes m days and
cost f cents a napkin.

» She can use a slow laundry that takes k > m days and costs s
cents each.

» At the end of each day she should determine how many to
send to each laundry and how many to buy in order to fulfill
demand.
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Applications

Caterer Problem

>
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>

She needs to supply 7; napkins on N successive days.
She can buy new napkins at p cents each.

She can launder them at a fast laundry that takes m days and
cost f cents a napkin.

She can use a slow laundry that takes k > m days and costs s
cents each.

At the end of each day she should determine how many to
send to each laundry and how many to buy in order to fulfill
demand.

Minimize cost.
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Residual Graph

The residual graph for a mincost flow is exactly defined as the
residual graph for standard flows, with the only exception that
one needs to define a cost for the residual edge.

EADS 15 Mincost Flow

(© Ernst Mayr, Harald Racke



Residual Graph

The residual graph for a mincost flow is exactly defined as the
residual graph for standard flows, with the only exception that
one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, 1) has capacity
z and a cost of —c((u,v)).
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15 Mincost Flow

A circulation in a graph G = (V,E) is a function f: E — R™ that
has an excess flow f(v) = 0 for every node v € V (G may be a
directed graph instead of just an oriented graph).
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15 Mincost Flow

A circulation in a graph G = (V,E) is a function f: E — R™ that
has an excess flow f(v) = 0 for every node v € V (G may be a
directed graph instead of just an oriented graph).

A circulation is feasible if it fulfills capacity constraints, i.e.,
f(e) <ul(e) for every edge of G.
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15 Mincost Flow

Lemma 85

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.
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15 Mincost Flow

Lemma 85

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.
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15 Mincost Flow

Lemma 85

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.
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15 Mincost Flow

Lemma 85

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.
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15 Mincost Flow

Lemma 85

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.

Clearly f* — f is a circulation of negative cost. One can also
easily see that it is feasible for the residual graph.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
» Suppose that we have a negative cost circulation.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
» Suppose that we have a negative cost circulation.
» Find directed path only using edges that have non-zero flow.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
» Suppose that we have a negative cost circulation.
» Find directed path only using edges that have non-zero flow.

» If this path has negative cost you are done.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

» Suppose that we have a negative cost circulation.

v

Find directed path only using edges that have non-zero flow.

v

If this path has negative cost you are done.

v

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

>

|

>

Suppose that we have a negative cost circulation.
Find directed path only using edges that have non-zero flow.
If this path has negative cost you are done.

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

You still have a circulation with negative cost.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

>

|

>

Suppose that we have a negative cost circulation.
Find directed path only using edges that have non-zero flow.
If this path has negative cost you are done.

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

You still have a circulation with negative cost.

Repeat.
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15 Mincost Flow

Algorithm 51 CycleCanceling(G = (V,E),c,u,b)

1: establish a feasible flow f in G

2: while G contains negative cycle do

3 use Bellman-Ford to find a negative circuit Z
4 0 —min{ug(e) |e € Z}

5 augment S units along Z and update G ¢
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15 Mincost Flow

0 » demand
_____——»cost
& .
&) capacity
flow
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15 Mincost Flow

Lemma 87

The improving cycle algorithm runs in time ©(nm?CU), for

integer capacities and costs, when for all edges e, |c(e)| < C and
lu(e)| < U.
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