Mincost Flow

Consider the following problem:

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : 0 \le f(e) \le u(e)$
 $\forall v \in V : f(v) = b(v)$

- G = (V, E) is an oriented graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}, \sum_{v \in V} b(v) = 0$ is a demand function.

EADS C Ernst Mayr, Harald Räcke

488

490

Solve Maxflow Using Mincost Flow Solve decision version of maxflow: • Given a flow network for a standard maxflow problem, and a value k. • Set b(v) = 0 for every node apart from s or t. Set b(s) = -kand b(t) = k. ► Set edge-costs to zero, and keep the capacities. • There exists a maxflow of value *k* if and only if the mincost-flow problem is feasible. EADS 15 Mincost Flow © Ernst Mayr, Harald Räcke

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.
- Add an edge from t to s with infinite capacity and cost -1.
- Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{\min} is a mincost-flow.

EADS © Ernst Mayr, Harald Räcke 15 Mincost Flow

m	in $\sum_{e} c(e) f(e)$
S.1	t. $\forall e \in E: 0 \le f(e) \le u(e)$
	$\forall v \in V : f(v) = b(v)$
where $b: V \to \mathbb{R}$, \sum	$\mathbb{L}_{v} b(v) = 0; u: E \to \mathbb{R}_{0}^{+} \cup \{\infty\}; c: E \to \mathbb{R};$
A more general m	odel?
min	$\sum_{e} c(e) f(e)$
s.t.	$\forall e \in E: \ \ell(e) \leq f(e) \leq u(e)$
	$\forall v \in V : a(v) \le f(v) \le b(v)$

489

Reduction I

 $\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ \ell(e) \leq f(e) \leq u(e) \\ & \forall v \in V : \ a(v) \leq f(v) \leq b(v) \end{array}$

We can assume that a(v) = b(v):

Add new node r.

Reduction II

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$ $\forall v \in V : f(v) = b(v)$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:

If c(e) = 0 we can simply contract the edge/identify nodes u and vEADS 15 Mincost Flow 493

Reduction IV		
	min $\sum_{e} c(e) f(e)$	
	s.t. $\forall e \in E: \ \ell(e) \leq f(e) \leq u(e)$	
	$\forall v \in V : f(v) = b(v)$	
We can assum	that $\ell(e) = 0$:	
	$u \qquad \qquad$	
	$b(\hat{u}) = d$ $b(\hat{v}) = -d$ v v u $u(e) - d$ $\ell(e) = 0$ $c(e)$	
The added edg	es have infinite capacity and cost $c(e)/2$.	
EADS © Ernst Mayr, Harald	15 Mincost Flow Räcke	495

Applications

Caterer Problem

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at *p* cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

EADS © Ernst Mayr, Harald Räc	15 Mincost Flow	
🛛 💾 🗋 🕻 🛈 Ernst Mayr, Harald Räc	ke	

15 Mincost Flow

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$ (*G* may be a directed graph instead of just an oriented graph).

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of *G*.

EADS © Ernst Mayr, Harald Räcke

498

496

Residual Graph

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u, v)).

EADS 15 Mincost Flow © Ernst Mayr, Harald Räcke 497

15 Mincost Flow

Lemma 85

$g = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for	
every edge $e = (u, v)$. If the result is positive set $g((u, v)) = \Delta(e)$	
and $g((v, u)) = 0$; otw. set $g((u, v)) = 0$ and $g((v, u)) = -\Delta(e)$.	

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f* be a min-cost flow.
 We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph.

15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- > You still have a circulation with negative cost.
- Repeat.

	15 Mincost Flow	
🛛 🛄 🗋 💿 Ernst Mayr, Harald Räcke		500

15 Mincost Flow

Algorithm 51 CycleCanceling(G = (V, E), c, u, b)

- 1: establish a feasible flow f in G
- 2: while G_f contains negative cycle **do**
- 3: use Bellman-Ford to find a negative circuit Z
- 4: $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$
- 5: augment δ units along Z and update G_f

	15 Mincost Flow	
🛛 💾 🗋 🖉 Ernst Mayr, Harald Räcke		501

15 Mincost Flow

Lemma 87

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \le U$.

	15 Mincost Flow	
🛛 🛄 🗍 🕼 🕲 Ernst Mayr, Harald Räcke		504

