Mincost Flow
Consider the following problem:
min >, c(e)f(e)

st. VeecE: 0< f(e) <u(e)
VveV: f(v)=b)

v

G = (V,E) is an oriented graph.

» u:E — R§ U {eo} is the capacity function.

v

c : E — R is the cost function (note that c(e) may be
negative).

b:V =R, >,cyb(v) =0is ademand function.

v
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Solve Maxflow Using Mincost Flow

v

Given a flow network for a standard maxflow problem.

Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.

Add an edge from t to s with infinite capacity and cost —1.
Then, val(f*) = — cost(fmin), Where f* is a maxflow, and
Jfmin is @ mincost-flow.

v

v

v
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and a
value k.

» Set b(v) = 0 for every node apart from s or t. Set b(s) = -k
and b(t) = k.

» Set edge-costs to zero, and keep the capacities.

» There exists a maxflow of value k if and only if the
mincost-flow problem is feasible.
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Generalization
Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
VveV: f(v)=>b)

where b:V - R, >, b(v) =0; u:E - Rj U{co}; c:E - R;

A more general model?

min >, c(e)f(e)
s.t. VeeE: {(e) < f(e) <ule)
VveV: av) < f(w) <b(w)

wherea:V - R,b:V-R; L:E-RU{-0},u:E - RU{oo}
c:E—-R;
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Reduction |
min >, c(e)f(e)
s.t. VeecE: f(e) < f(e) <ule)
YVveV: aw) < f(v) <b(v)

We can assume that a(v) = b(v):

Add new node 7.
Add edge (7,v) forall v e V.

Set £(e) = c(e) = O for these
edges.

Setu(e) = b(v) —a(v) for

edge (7,v).
Seta(v) =b(v) forallv e V.
Set b(r) =>,cy b(v).

Reduction Il

min >, c(e)f(e)
st. VeeE: £(e) < f(e) <ule)
VveV: f(w)=>bv)

We can assume that either £(e) # —c or u(e) # oo:

u(e)= oo
bt(e) = —o0
cle) =0

If c(e) = 0 we can simply contract the edge/identify nodes u and
v
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Reduction IlI
min >, c(e)f(e)
st. VecE: f(e) < fle) <ule)
VvveV: f(v)=b)

We can assume that £(e) = —oo:

u (v
O u(e)=d # O
l(e) =—o

cle)=a
u )< v
O ue)=o O
le)=—d
cle)=-a

Replace the edge by an edge in opposite direction.
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Reduction IV

min >, c(e)f(e)
st. VecE: f(e) < f(e) <ule)
VvveV: f(v)=b)

We can assume that £(e) = O:

® — >©
f(e)=d + =
c(e)
l(e) =0
c(e)

The added edges have infinite capacity and cost c(e)/2.
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Applications

Caterer Problem
» She needs to supply 7; napkins on N successive days.
» She can buy new napkins at p cents each.

» She can launder them at a fast laundry that takes m days and
cost f cents a napkin.

» She can use a slow laundry that takes k > m days and costs s
cents each.

» At the end of each day she should determine how many to
send to each laundry and how many to buy in order to fulfill
demand.

» Minimize cost.
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Residual Graph

The residual graph for a mincost flow is exactly defined as the
residual graph for standard flows, with the only exception that
one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity
z and a cost of —c((u,v)).
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15 Mincost Flow

A circulation in a graph G = (V,E) is a function f : E — R* that
has an excess flow f(v) = 0 for every node v € V (G may be a
directed graph instead of just an oriented graph).

A circulation is feasible if it fulfills capacity constraints, i.e.,
f(e) <u(e) for every edge of G.
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1
. 1g = f* — f is obtained by computing A(e) = f*(e) — f(e) for
] 5 MInCOSt FIOW : every edge e = (u, v). If the result is positive set g((u,v)) = A(e)

Lemma 85 e e =05 am S o)) SOEE ) = 20, |

A given flow is a mincost-flow if and only if the corresponding
residual graph G ¢ does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.

Clearly f* — f is a circulation of negative cost. One can also
easily see that it is feasible for the residual graph.
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15 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
» Suppose that we have a negative cost circulation.
» Find directed path only using edges that have non-zero flow.
» If this path has negative cost you are done.

» Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

» You still have a circulation with negative cost.
» Repeat.
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15 Mincost Flow

Algorithm 51 CycleCanceling(G = (V,E),c,u,b)

1: establish a feasible flow f in G

2: while G ¢ contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4 0 —min{uyr(e) | e € Z}

5 augment 6 units along Z and update G
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15 Mincost Flow
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15 Mincost Flow
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15 Mincost Flow

Lemma 87

The improving cycle algorithm runs in time ©(nm?2CU), for

integer capacities and costs, when for all edges e, |c(e)| < C and
lu(e)| < U.
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