
17 Gomory Hu Trees

Given an undirected, weighted graph G = (V , E, c) a cut-tree

T = (V , F,w) is a tree with edge-set F and capacities w that

fulfills the following properties.

1. Equivalent Flow Tree: For any pair of vertices s, t ∈ V ,

f(s, t) in G is equal to fT (s, t).

2. Cut Property: A minimum s-t cut in T is also a minimum

cut in G.

Here, f(s, t) is the value of a maximum s-t flow in G, and fT (s, t)
is the corresponding value in T .
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Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .
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Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.
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Example: Gomory-Hu Construction
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Analysis

Lemma 92
For nodes s, t, x ∈ V we have f(s, t) ≥min{f(s, x), f (x, t)}

Lemma 93
For nodes s, t, x1, . . . , xk ∈ V we have

f(s, t) ≥min{f(s, x1), f (x1, x2), . . . , f (xk−1, xk), f (xk, t)}
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Lemma 94
Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ � and

X ∩ (V \ S) ≠ �. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).



cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S
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cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S
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Analysis

Lemma 94 tells us that if we have a graph G = (V , E) and we

contract a subset X ⊂ V that corresponds to some mincut, then

the value of f(s, t) does not change for two nodes s, t ∉ X.

We will show (later) that the connected components that we

contract during a split-operation each correspond to some mincut

and, hence, fH(s, t) = f(s, t), where fH(s, t) is the value of a

minimum s-t mincut in graph H.
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Analysis

Invariant [existence of representatives]:

For any edge {Si, Sj} in T , there are vertices a ∈ Si and b ∈ Sj
such that w(Si, Sj) = f(a, b) and the cut defined by edge {Si, Sj}
is a minimum a-b cut in G.
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Analysis

We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).
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Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).
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Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 94.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i ) = fH(a, b) we can

simply choose a and b as representatives.
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Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).
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Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 94 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.
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Analysis
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