16 Global Mincut

Given an undirected, capacitated graph G = (V, E, c) find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.

16 Global Mincut

We can solve this problem using standard maxflow/mincut.

- Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge {u, v} ∈ E.
- ► Fix an arbitrary node $s \in V$ as source. Compute a minimum *s*-*t* cut for all possible choices $t \in V, t \neq s$. (Time: $O(n^4)$)
- Let (S, V \ S) be a minimum global mincut. The above algorithm will output a cut of capacity cap(S, V \ S) whenever |{s,t} ∩ S| = 1.

Edge Contractions

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ► The graph *G*/*e* is obtained by "identifying" *u* and *v* to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88

Edge-contractions do no decrease the size of the mincut.

Edge Contractions

We can perform an edge-contraction in time $\mathcal{O}(n)$.

Randomized Mincut Algorithm

- Let G_t denote the graph after the (n t)-th iteration, when t nodes are left.
- ▶ Note that the final graph *G*² only contains a single edge.
- ► The cut in *G*² corresponds to a cut in the original graph *G* with the same capacity.
- What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

What is the probability that this algorithm returns a mincut?

What is the probability that a given mincut A is still possible after round *i*?

It is still possible to obtain cut A in the end if so far no edge in (A, V \ A) has been contracted.

What is the probability that we select an edge from A in iteration i?

- Let $\min = \operatorname{cap}(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

► Hence, the probability of choosing an edge from the cut is at most $\min / c(E) \le 2/(n - i + 1)$.

n-i+1 is the number of nodes in graph $G_{n-i+1} = (V_{n-i+1}, E_{n-i+1})$, the graph at the start of iteration *i*.

EADS © Ernst Mayr, Harald Räcke

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n - i + 1} = \frac{n - i - 1}{n - i + 1}$$

The probability that the cut is alive after iteration n - t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)}$$

Choosing t = 2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq n^{-c}$$
,

where we used $1 - x \le e^{-x}$.

Theorem 89

The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.

Improved Algorithm

Algorithm 53 RecursiveMincut(G = (V, E, c))1: for $i = 1 \rightarrow n - n/\sqrt{2}$ do2: choose $e \in E$ randomly with probability c(e)/C(E)3: $G \leftarrow G/e$ 4: if |V| = 2 return cut-value;5: cuta \leftarrow RecursiveMincut(G);6: cutb \leftarrow RecursiveMincut(G);7: return min{cuta, cutb}

Running time:

►
$$T(n) = 2T(\frac{n}{\sqrt{2}}) + \mathcal{O}(n^2)$$

• This gives
$$T(n) = \mathcal{O}(n^2 \log n)$$
.

Note that the above implementation only works for very special values of *n*.

EADS © Ernst Mayr, Harald Räcke

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

$$\frac{t(t-1)}{n(n-1)} \approx \frac{t^2}{n^2} = \frac{1}{2}$$
,

as $t = \frac{n}{\sqrt{2}}$.

For the following analysis we ignore the slight error and assume that this probability is at most $\frac{1}{2}$.

We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 90

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Proof.

- ► An edge *e* with *h*(*e*) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least ¹/₂.
- ► Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge e = {c, p} if it is not deleted and if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_{d} = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^{2} \right) \quad \boxed{\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]}$$
$$= p_{d-1} - \frac{p_{d-1}^{2}}{2}$$
$$\frac{1}{d} - \frac{1}{2d^{2}} \ge \frac{1}{d} - \frac{1}{d(d+1)} = \frac{1}{d+1} \quad .$$

ir

16 Global Mincut

Lemma 91

One run of the algorithm can be performed in time $\mathcal{O}(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $O(n^2 \log^3 n)$.

