
7 Dictionary

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

EADS

c© Ernst Mayr, Harald Räcke 109

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary

tree. Each tree-node corresponds to an element. All elements in

the left sub-tree of a node v have a smaller key-value than key[v]
and elements in the right sub-tree have a larger-key value. We

assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

6

2 7

1 5 8

1

2

5

6

7

8

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 110

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note

that this is a super-set of the dictionary-operations.

ñ T. insert(x)
ñ T. delete(x)
ñ T. search(k)
ñ T. successor(x)
ñ T. predecessor(x)
ñ T.minimum()
ñ T.maximum()

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 111

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is min in
right sub-tree

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is lowest
ancestor going
left to reach me

x

y

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 1:

Element does not have any children
ñ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x]← parent[y];
6: if parent[y] = null then
7: root[T]← x
8: else
9: if y = left[parent[x]] then

10: left[parent[y]]← x
11: else
12: right[parent[y]]← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)
parent[x] is correct

fix pointer to x

fix pointer to x

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 118

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120

Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 121

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most

O(logn).

Definition 13
The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 122

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red

black properties are maintained.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 126

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 127

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z
Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

Case 1: uncle red

Case 2: uncle black

2a: z right child

2b: z left child

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing step one O(logn) times and every other step at most

once, we get a red-black tree. Hence O(logn) re-colourings and

at most 2 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 134

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135

Red Black Trees: Delete
25

13 3041

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorihtm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 138

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143

7.3 AVL-Trees

Definition 15
AVL-trees are binary search trees that fulfill the following balance

condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 16
An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 144

Proof.
The upper bound is clear, as a binary tree of height h can only

contain
h−1∑
j=0

2j = 2h − 1

internal nodes.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 145

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 146

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

7.3 AVL-Trees

Since

F(k) ≈ 1√
5

(
1+√5

2

)k
,

an AVL-tree with n internal nodes has height Θ(logn).

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 148

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .
balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,
respectively.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 149

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 150

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e (y
) RightRotate (x)

DoubleRightRotate (x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153

AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 154

AVL-trees: Insert

Algorithm 12 DoRotationInsert(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = 1 then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 155

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in a

balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 157

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate (v)

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

DoubleLeftRotate (v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the

case of a delete there may be a logarithmic number of rotations.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 162

AVL-trees: Delete

Algorithm 14 DoRotationDelete(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = {0,1} then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 163

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in a

balance of 2 at v.

Before the insertion the height of Tv was h+ 2.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 165

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

DoubleRightRotate (v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168

7.4 (a, b)-trees

Each internal node v with d(v) children stores d− 1 keys

k1, . . . , kd − 1. The i-th subtree of v fulfills

ki−1 < key in i-th sub-tree ≤ ki ,

where we use k0 = −∞ and kd = ∞.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 169

7.4 (a, b)-trees

Example 18

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 170

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172

Search

Search(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173

Search

Search(19)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞19

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node v
on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 174

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175

Insert

Insert(7)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176

Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞7

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 10 19

6

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176

Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance’(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 177

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178

Delete

Delete(10) Delete(14)

Delete(3) Delete(1)

Delete(19)

1 3 5

1 3 5 10

1 3

1 3 5

1

1 31

1 5

1 5 19

5

5 195

5 28

5 28 ∞

14

14 1919

5

5 19

28

28 ∞

10 195 193 191 19195

10143 1 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

1 3 4 5 8 11 13 17 18 19 20 22 25 27 41 43 47 ∞

First make it into an internal search tree by
moving the satellite-data from the leaves to
internal nodes. Add dummy leaves.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Then, color one key in each internal node v
black. If v contains 3 keys you need to select
the middle key otherwise choose a black key
arbitrarily. The other keys are colored red.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Re-attach the pointers to individual keys. A
pointer that is between two keys is attached as
a child of the red key. The incoming pointer,
points to the black key.

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr). Choose

r = k+1√n =⇒ time: O(k k+1√n)

Choosing k = Θ(logk) gives a logarithmic running time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 184

7.5 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 185

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187

7.5 Skip Lists

Lemma 20
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

This means for any constant α the search takes time O(logn)
with probability at least 1− 1

nα .

Note that the constant in the O-notation may depend on α.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 188

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 191

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193

7.6 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the k-th element; return “error” if the

data-structure contains less than k elements.

Augment an existing data-structure instead of developing a

new one.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 194

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 195

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 196

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root, k) with

Algorithm 15 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 197

Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

select(25 , 14)

select(13 , 14)

select(21 , 5)

select(16 , 5)

select(19 , 3)

select(20 , 1)

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199

Rotations

The only operation during the fix-up procedure that alters the tree

and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 200

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202

7.7 Hashing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

x

�

k6

k3

�

�

k7

�

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 203

7.7 Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

Such a hash function h is called a perfect hash function for set S.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 204

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏
`=1

n− ` + 1
n

=
m−1∏
j=0

(
1− j

n

)

≤
m−1∏
j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207

x

f(x)

f(x) = e−xg(x) = 1− x

The inequality 1− x ≤ e−x is derived by stopping the

tayler-expansion of e−x after the second term.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 208

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining. aka. closed addressing, open

hashing.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 209

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

x

�

�

�

�

k1 k4 �

k5 k2 k7 �

k3 �

k8 k6 �

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 210

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]keys before ki

cost for key ki

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213

Hashing with Chaining

E
[

1
m

m∑
i=1

(
1+

m∑
j=i+1

Xij
)]
= 1
m

m∑
i=1

(
1+

m∑
j=i+1

E
[
Xij

])

= 1
m

m∑
i=1

(
1+

m∑
j=i+1

1
n

)

= 1+ 1
mn

m∑
i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)
= 1+ m− 1

2n
= 1+ α

2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 217

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 23
Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 218

Double Hashing

ñ Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 219

7.7 Hashing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 220

7.7 Hashing

L−D−L+D+ α

#probes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 221

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222

Analysis of Idealized Open Address Hashing

E[X] =
∞∑
i=1

Pr[X ≥ i] ≤
∞∑
i=1

αi−1 =
∞∑
i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223

i = 3

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224

i = 4

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑
i=0

n
n− i =

n
m

m−1∑
i=0

1
n− i =

1
α

n∑
k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225

x

f(x)

f(x) = 1
x

m−n m−n+ 1 n

1
m−n+1

1
m−n+2 · · · 1

n

n∑
k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 226

7.7 Hashing

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 227

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228

7.7 Hashing

Definition 25
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that Pr[h(u1) = h(u2)] = 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 229

7.7 Hashing

Definition 26
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

Note that the probability is w. r. t. the choice of a random

hash-function from set H .

This requirement clearly implies a universal hash-function.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 230

7.7 Hashing

Definition 27
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 231

7.7 Hashing

Definition 28
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
(µ
n
)` ,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 232

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 239

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑
j
m2
j

]
= E

[
2
∑
j

(
mj
2

)
+
∑
j
mj

]

= 2 E
[∑
j

(
mj
2

)]
+ E

[∑
j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m).

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket.

We only need that the hash-function is universal!!!

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 243

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

x6

x1

x7

x6

x1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245

Cuckoo Hashing

Algorithm 16 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: rehash() // change table-size and rehash everything
9: Cuckoo-Insert(x)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 246

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6
a7

a8

a2

a1

x

b1
b2

b3

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250

Cuckoo Hashing

Observation If we end up in an infinite loop there must exist a

cycle-structure that is active for x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 251

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for

the probability of mapping s + 1 keys (the a-keys, the b-keys and

x) to pre-specified positions in T1, and to pre-specified positions

in T2.

The probability is (µ
n

)s+1 ·
(µ
n

)s+1
,

since h1 and h2 are chosen independently.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 253

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑
s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑
s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑
s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258

Cuckoo Hashing

Observation:

If the insert takes t ≥ 4` steps there must either be a left-active or

a right-active sub-sequence of length ` starting with x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 259

Cuckoo Hashing

The probability that a given sub-sequence is left-active

(right-active) is at most (µ
n

)2`
,

if we use (µ, `)-independent hash-functions. This holds since

there are ` keys whose hash-values (two values per key) have to

map to pre-specified positions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 260

Cuckoo Hashing

The number of sequences is at most m`−1p`+1 as we can choose

` − 1 keys (apart from x) and we can choose ` + 1 positions

p0, . . . , p`.

The probability that there exists a left-active or right-active

sequence of length ` is at most

Pr[there exists active sequ. of length `]

≤ 2 ·m`−1 ·n`+1 ·
(µ
n

)2`

≤ 2
(1

1+ δ
)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 261

Cuckoo Hashing

If the search does not run into an infinite loop the probability that

it takes more than 4` steps is at most

2
(1

1+ δ
)`

We choose maxsteps = 4(1+ 2 logm)/ log(1+ δ). Then the

probability of terminating the while-loop because of reaching

maxsteps is only O(1
m2) (O(1/m2) because of reaching an

infinite loop and 1/m2 because the search takes maxsteps steps

without running into a loop).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 262

Cuckoo Hashing

The expected time for an insert under the condition that

maxsteps is not reached is∑
`≥0

Pr[search takes at least ` steps | iteration successful]

≤
∑
`≥0

8
(1

1+ δ
)` = O(1) .

More generally, the above expression gives a bound on the cost in

the successful iteration of an insert-operation (there is exactly one

successful iteration).

An iteration that is not successful induces cost O(m) for doing a

complete rehash.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 263

Cuckoo Hashing

The expected number of unsuccessful operations is O(1
m2).

Hence, the expected cost in unsuccessful iterations is only O(1
m).

Hence, the total expected cost for an insert-operation is constant.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 264

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) it is sufficient to have

(µ,Θ(logm))-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 265

Cuckoo Hashing

How do we make sure that n ≥ µ2(1 + δ)m?

ñ Let α := 1/(µ2(1+ δ)).
ñ Keep track of the number of elements in the table. Whenever

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below α
4n we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have m = α
2n.

In order for a table-expand to occur at least α2n insertions

are required. Similar, for a table-shrink at least α4 deletions

must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 266

Definition 31
Let d ∈ N; q ≥ n be a prime; and let ~a ∈ {0, . . . , q − 1}d+1. Define

for x ∈ {0, . . . , q}

h~a(x) :=
(d∑
i=0

aixi mod q
)

mod n .

Let Hd
n := {h~a | ~a ∈ {0, . . . , q}d+1}. The class H d

n is

(2, d+ 1)-independent.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 267

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑
i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤
(2
n

)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 270

	Dictionary
	Binary Search Trees
	Red Black Trees
	AVL-Trees
	(a,b)-trees
	Skip Lists
	Augmenting Data Structures
	Hashing

