19 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: O(mval(f*)) = O(mn).
» Capacity scaling: O(m?logC) = O(m?).

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

545

20 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.
» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 95
A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Récke

546

Augmenting Paths in Action

O

j\// /6/]

RO

N

EADS 20 Augmenting Paths for Matchings
© Ernst Mayr, Harald Racke

547

20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M @ P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ ® M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |[M'| > |M]| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’. P is an alternating path.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Récke

548

20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M' = M & P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

| The above theorem allows for an easier implementation of an augment-
| ing path algorithm. Once we checked for augmenting paths starting

1 from u we don’t have to check for such paths in future rounds.
. 1

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

549

20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I Pl”..

path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (4).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u'.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with Py.

.. P I
» Py o P| is augmenting path in M (4).

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Récke

550

How to find an augmenting path?

Construct an alternating tree.

/O O

even nodes
odd nodes

Case 1:
v is free vertex not
contained in T

Y1
A

PN
Q

d
N

you found alternating

@ O O O O

O 0O 3 O 0O O

path
o]
™ O
EADS 20 Augmenting Paths for Matchings

© Ernst Mayr, Harald Racke

551

How to find an augmenting path?

Construct an alternating tree.

/O O

even nodes
odd nodes

Case 2:

y is matched vertex
not in T; then
mate[y] ¢ T

Y1
A

PN
Q

d
N

grow the tree

® O O O O

o
‘e,
-
.
]

©o—0

o
®
/\
O O d O b O

O

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Récke

552

How to find an augmenting path?

Construct an alternating tree.

O O O O

= o e
.....
"~... \
L |
~
.....
..
....
)
EADS 20 Augmenting Paths for Matchings

(© Ernst Mayr, Harald Racke

even nodes
odd nodes

Case 3:
7y is already contained
in T as an odd vertex

ignore successor y

553

How to find an augmenting path?

Construct an alternating tree.

e O even nodes
odd nodes
/ Case 4:
” od -0 | ¥ is already contained
'.\ in T as an even vertex
.’u, O can’t ignore y
—() | does not happen in
1 (! pp
@« bipartite graphs
\ O
EADS 20 Augmenting Paths for Matchings

(© Ernst Mayr, Harald Récke

554

Algorithm 1 BiMatch (G, match)
1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free> 1 and v < n do
4: ¥ —r+1
5: if mate[r] = 0 then
6: for i =1 to m do parent[i’] — 0
7e Q — 0; Q.append(r); aug — false;
8: while aug = false and Q + 0 do
9: x < Q.dequeue();
10: if 3y € Ax: mate[y] = 0 then
11: augment(mate, parent, y);
12: aug — true; free — free — 1;
13: else
14: if parent[y] = 0 then
15: parent[y] — x;
16: Q.enqueue(y);
EADS 20 Augmenting Paths for Matchings

© Ernst Mayr, Harald Racke

graph G = (SU §',E);
S=A{1,...,n};
S={1,...,n'}

initial matching empty

free: number of
unmatched nodes in S

v: root of current tree

if v is unmatched
start tree construction

initialize empty tree

no augmen. path but
unexamined leaves

free neighbour found

add new node y to Q

555

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = LUR,E.
» an edge e = (£,r) has weight w, =0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that |[L| = |R| =n

» assume that there is an edge between every pair of nodes
,ryevxVv

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Récke

556

