
C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

There are different types of complexity bounds:

ñ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

ñ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
ñ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)
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There are different types of complexity bounds:

ñ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

ñ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.
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5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymtotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.
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Asymptotic Notation

Formal Definition

Let f denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N to

R+.

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.
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Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) ≤ f(n)+ z(n).

3. This is particularly useful if you do not
want to ignore constant factors. For ex-
ample the median of n elements can
be determined using 3

2n+o(n) compar-
isons.

2. In this context f(n) does not mean the
function f evaluated at n, but instead
it is a shorthand for the function itself
(leaving out domain and codomain and
only giving the rule of correspondence
of the function).
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Asymptotic Notation

Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.
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Asymptotic Notation

Lemma 3
Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).
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Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.
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6 Recurrences

Algorithm 2 mergesort(listL)
1: s ← size(L)
2: if s ≤ 1 return L
3: L1 ← L[1 · · · b s2c]
4: L2 ← L[d s2e · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) ≤ 2T
(⌈n

2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.
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Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.
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