Part V

Matchings

EADS
(© Ernst Mayr, Harald Racke

Matching

» Input: undirected graph G = (V,E).

» M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum cardinality

EADS 18 Definition
(© Ernst Mayr, Harald Racke

Bipartite Matching

» Input: undirected, bipartite graph G = (L w R, E).

» M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum cardinality

EADS 18 Definition
(© Ernst Mayr, Harald Racke

Bipartite Matching

» Input: undirected, bipartite graph G = (L w R, E).

» M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum cardinality

EADS 18 Definition
(© Ernst Mayr, Harald Racke

Bipartite Matching

» A matching M is perfect if it is of cardinality |[M| = |V|/2.

» For a bipartite graph G = (L w R, E) this means
IM| = |L| = |R| =n.

EADS 18 Definition
(© Ernst Mayr, Harald Racke

19 Bipartite Matching via Flows

» Input: undirected, bipartite graph G = (Lw R w {s,t},E’).
Direct all edges from L to R.

Add source s and connect it to all nodes on the left.

Add t and connect all nodes on the right to t.

All edges have unit capacity.

v

v

v

v

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

o/
G/
EADS 19 Bipartite Matching via Flows

(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.
» Each node in L and R participates in at most one edge in M.
» |M| = k, as the flow must use at least k middle edges.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.
» Each node in L and R participates in at most one edge in M.
» |M| = k, as the flow must use at least k middle edges.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.
» Each node in L and R participates in at most one edge in M.
» |M| = k, as the flow must use at least k middle edges.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.
» Each node in L and R participates in at most one edge in M.
» |M| = k, as the flow must use at least k middle edges.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

19 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: O(mval(f*)) = O(mn).

» Capacity scaling: O(m?logC) = O(m?).

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

EADS 20 Augmenting Paths for Matchings

(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

@

<4‘>>§5 6 7)

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

@

<\/\/m e/ 2
X

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

X

(1)
5
9

XX

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

Augmenting Paths in Action

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |M’| > |M]| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’'. P is an alternating path.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

EADS

20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M’ = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting |
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’

from u to u’ with P;. §
> Pj o P| is augmenting path in M (%).

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

e\ e Q even nodes
))
/C> odd nodes
» O O
@< O &\ O O
O O
% <
Oi\
O O
EADS 20 Augmenting Paths for Matchings

(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

AN
Q

o4
N

vd
N

/\
O 0O d 0O O O

o

O
O
O
O
®
O

even nodes
odd nodes

Case 1:
y is free vertex not
contained in T

you found alternating
path

o
LI
.
-
.

®

EADS
(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

AN
Q

o4
N

vd
N

/\
O 0O d 0O O O

o

O
O
O
O
®
O

EADS
(© Ernst Mayr, Harald Racke

even nodes
odd nodes

Case 2:

vy is matched vertex
not in T; then
mate[y] ¢ T

grow the tree

o
LI
.
-
.

©o—0

20 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

O

OO
u 0 CE
R AN

'~..... \
.y

% o

even nodes
odd nodes

Case 3:
v is already contained
in T as an odd vertex

ignore successor y

® O O O O

O O/ 0 O O

O

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

even nodes

/C

O

odd nodes

Case 4:
v is already contained

AN
Q

in T as an even vertex

3 O 0O O

*
*|
3
*
*
‘e
‘e
o

g
Q
Q
Q
0
)

can’t ignhore y

@ O O O O

* o

does not happen in
bipartite graphs

/\
35

O

EADS

(© Ernst Mayr, Harald Racke

20 Augmenting Paths for Matchings

Algorithm 1 BiMatch(G, match)

1: for x € V do mate[x] — O;

2. v < 0; free — n;

3: while free>1 and v < n do

4: ¥ —r+1

5 if mate[r] = 0 then

6 fori =1 to m do parent[i'] — 0
7: Q < 0; Q.append(r); aug — false;
8 while aug = false and Q # 0 do

9: x — Q.dequeue();
10: if 3y € Ax: mate[y] = 0 then
11: augment(mate, parent,y);
12: aug < true; free — free —1;
13: else
14: if parent[y] = 0 then
15: parent[y] < x;
16: Q.enqueue(y);

EADS 20 Augmenting Paths for Matchings

(© Ernst Mayr, Harald Racke

graph G = (SUS',E);
S=1{1,...,n};
S={1,...,n'}

initial matching empty

free: number of
unmatched nodes in S

¥: root of current tree

if ¥ is unmatched
start tree construction

initialize empty tree

no augmen. path but
unexamined leaves

free neighbour found

add new node y to Q

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, = 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that [L| = |R| =n

» assume that there is an edge between every pair of nodes
@, r)evxvVv

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, whereI'(S) denotes the set
of nodes in R that have a neighbour in S.

EADS

21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.
= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
» Let S denote a minimum cutand let Lg < L. NS and

Rs # R N S denote the portion of S inside L and R,
respectively.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].

» Using the fact that |T'(Ls)| > Lg gives that this is at least |L].

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = (u,v).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = (u,v).

» Try to compute a perfect matching in the subgraph H(x). If
you are successful you found an optimal matching.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

Reason:

» The weight of your matching M* is

D, Wauw = D, (utx) =2 Xy,

(u,v)eM* (u,v)eM* v

» Any other matching M has

D> Wy = D (Xu+xy) <D Xy

(w,v)eM (u,v)eM v

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

EADS

21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
» the total weight assigned to nodes decreases

» the weight function still dominates the edge-weights

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
» the total weight assigned to nodes decreases
» the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the

node-weights in S by —9.

EADS
(© Ernst Mayr, Harald Racke

+6

21 Weighted Bipartite Matching

I'eS)

Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

+6

I'eS)

Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

+6

I'eS)

Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight. +6|I(S)

» Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence sles
would go between S and I'(S))
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How do we find §?
» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Voddl = IT (Veven)| < [Vevenl, and all odd vertices are
saturated in the current matching.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge

connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge

connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.

» In total we otain a running time of @ (n%).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.
» In total we otain a running time of @ (n%).

» A more careful implementation of the algorithm obtains a
running time of ©(n3).

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke

A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let 7 = {P1,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M<—MGB(P1U---UPk)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
» The connected components of G are cycles and paths.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist

IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k ¢ |[M*| — [M| more red edges than
blue edges.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

|

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are augmenting
paths w.r.t. M.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

Lemma 99
Theset A<Mae (M @®P)=(PLU---UPy)®P contains at least

(k + 1)¥ edges.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.

EADS

22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.

» Each of these paths is of length at least £.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.

» Hence, |A| < k€ + |P| - 1.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

>

If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

This edge is not contained in A.

Hence, |A| < k€ + |P| - 1.

The lower bound on |A| gives (k +1)f < |A| < k€ + |P| -1,
and hence |P| > ¥ + 1.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges
then the cardinality of the maximum matching is of size at most

IM + |2k

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most

IM + |2k

Proof.
The symmetric difference between M and M* contains |[M*| — M|

vertex-disjoint augmenting paths. Each of these paths contains at

least £ + 1 vertices. Hence, there can be at most }% of them.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration |+/|V]] the length of a shortest augmenting
path must be at least |[/|V]] +1 = /|V].

» Hence, there can be at most |V |/(y/|V|+ 1) < /|V]|
additional augmentations.

EADS

22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke

Analysis

Lemma 102
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).

EADS 22 The Hopcroft-Karp Algorithm

(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

/O O

even nodes
odd nodes

O

Case 4:
v is already contained
in T as an even vertex

AN
Q

-
TN

can’t ignore y

/\
OO0 d o b

.0 O O O O

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

N\ e
p % U/

O
oo
O

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

O

in T as an even vertex

can’t ignore y

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

How to find an augmenting path?

Construct an alternating tree.

N\ e
p % U/

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

in T as an even vertex

O

” N Y1 I\
) Oy),

O

can’t ignore y

Thecyclew « y —x < w is
called a blossom.

w is called the base of the
blossom (even nodel!l!).

The path u-w path is called
the stem of the blossom.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)

root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base of
the blossom.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

(A ()
—O—CO—=G
() ()
—O0—0—=C

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at r).

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Flowers and Blossoms

O,

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

®

®

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.

» Add a new (pseudo-)vertex b. The new vertex b is connected
to all vertices in V' \ B that had at least one edge to a vertex

from B.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Algorithm 55 search(r, found)

1: set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to v and initialize list — {r}
while list = 0 do

delete a node i from list

examine(i, found)

if found = true then

return

PN T2HR

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Algorithm 56 examine(i, found)

1: forall j € A(i) do

2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

2 pred(j) < i;

0 pred(mate(j)) < j;

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Algorithm 57 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxepA(k)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular doubly linked list of nodes in B
delete nodes in B from the graph

ChU'I-l}UJN—'

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

11
© 1
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(4]

e

@9

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(4]

| T

@9

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

11
© 1
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

@9

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(4]

11
15

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(4]

11
15

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(9 E

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(9 E

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

(9 E

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Assume that we have contracted a blossom B w.r.t. a matching M
whose base is w. We created graph G’ = G/B with pseudonode b.
Let M’ be the matching in the contracted graph.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Assume that we have contracted a blossom B w.r.t. a matching M
whose base is w. We created graph G’ = G/B with pseudonode b.
Let M’ be the matching in the contracted graph.

Lemma 104

If G' contains an augmenting path p’ starting at v (or the
pseudo-node containing v) w.r.t. to the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.

If p” does not contain b it is also an augmenting path in G.

EADS 23 Maximum Matching in General Graphs =] F

© Ernst Mayr, Harald Racke

Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.

@ 0 0 9 @

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.

@ 0 0 9 @

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

» After the expansion £ must be incident to some node in the
blossom. Let this node be k.

» If k # w there is an alternating path P> from w to k that
ends in a matching edge.

» P1o(i,w)oPyo (k,¥) o P3is an alternating path.
» If k = w then P; o (i,w) o (w,¥) o P3 is an alternating path.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.

Case 2: empty stem

» If the stem is empty then after expanding the blossom,
w="r.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.

Case 2: empty stem
» If the stem is empty then after expanding the blossom,

w=r.
—@ @
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Proof.

Case 2: empty stem
» If the stem is empty then after expanding the blossom,

w=r.
—@ @
P3
() (K)———(F) -
O K © @
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Proof.

Case 2: empty stem

» If the stem is empty then after expanding the blossom,
w="r.

» The path 7 o P> o (k,¥) o P3 is an alternating path.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Lemma 105

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing v) to q w.r.t. M'.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.

EADS 23 Maximum Matching in General Graphs =] F =
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P; o (i, j) o P>, for some node j and (i, j) is
unmatched.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P; o (i, j) o P>, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

@)
O
@)

e
o)
®

EADS
© Ernst Mayr, Harald Racke

23 Maximum Matching in General Graphs

Case 2: non-empty stem

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem

Let P3 be alternating path from v to w. Define M, = M & P3.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.

In M., v is matched and w is unmatched.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M’ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M’ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between ¥ and q.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

e 0
2/ N\
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

e 0
2/ N\
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

e 0
2/ N\
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

e 0
2/ N\
EADS 23 Maximum Matching in General Graphs

(© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

0 0
2/ N\
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

0 0
2/ N\
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

0 0
2/ N\
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

0 0
2/ N\
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

0 0
2/ N\
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
&) &)
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

EADS 23 Maximum Matching in General Graphs
© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
@ &)
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
® @
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
@ &)
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
® @
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

Example: Blossom Algorithm

) (2)
® @
EADS 23 Maximum Matching in General Graphs =

© Ernst Mayr, Harald Racke

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	The Hopcroft-Karp Algorithm
	Maximum Matching in General Graphs

