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Matching

» Input: undirected graph G = (V,E).

» M c E is a matching if each node appears in at most one
edge in M.

» Maximum Matching: find a matching of maximum cardinality
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Bipartite Matching

» Input: undirected, bipartite graph G = (L w R, E).
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Bipartite Matching

» A matching M is perfect if it is of cardinality |[M| = |V|/2.

» For a bipartite graph G = (L w R, E) this means
IM| = |L| = |R| =n.
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19 Bipartite Matching via Flows

» Input: undirected, bipartite graph G = (Lw R w {s,t},E’).
Direct all edges from L to R.

Add source s and connect it to all nodes on the left.

Add t and connect all nodes on the right to t.

All edges have unit capacity.
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Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke



Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke



Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.

EADS 19 Bipartite Matching via Flows
(© Ernst Mayr, Harald Racke



Proof

Max cardinality matching in G < value of maxflow in G’
» Given a maximum matching M of cardinality k.
» Consider flow f that sends one unit along each of k paths.

» fis a flow and has cardinality k.
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Proof

Max cardinality matching in G > value of maxflow in G’
» Let f be a maxflow in G’ of value k
» Integrality theorem = k integral; we can assume f is 0/1.
» Consider M= set of edges from L to R with f(e) = 1.
» Each node in L and R participates in at most one edge in M.
» |M| = k, as the flow must use at least k middle edges.
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19 Bipartite Matching via Flows

Which flow algorithm to use?
» Generic augmenting path: O(mval(f*)) = O(mn).

» Capacity scaling: O(m?logC) = O(m?).
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20 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.
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20 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.
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20 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.
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20 Augmenting Paths for Matchings

Definitions.

» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.
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Augmenting Paths in Action
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20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.
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Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).
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Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.
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20 Augmenting Paths for Matchings

Proof.

= If M is maximum there is no augmenting path P, because we
could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.

< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |M’| > |M]| there is one connected component that is a
path P for which both endpoints are incident to edges from
M’'. P is an alternating path.
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20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.
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20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M’ = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.
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20 Augmenting Paths for Matchings

Proof
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20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.
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20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).
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20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke



20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting I
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke



20 Augmenting Paths for Matchings

Proof
» Assume there is an augmenting |
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke
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Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.
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20 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let u’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’

from u to u’ with P;. §
> Pj o P| is augmenting path in M (%).
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How to find an augmenting path?

Construct an alternating tree.

e\ e Q even nodes
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How to find an augmenting path?

Construct an alternating tree.
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Case 2:

vy is matched vertex
not in T; then
mate[y] ¢ T

grow the tree
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How to find an augmenting path?

Construct an alternating tree.

O

OO
u 0 CE
R AN

'~..... \
.y

% o

even nodes
odd nodes

Case 3:
v is already contained
in T as an odd vertex

ignore successor y

® O O O O

O O/ 0 O O

O

EADS 20 Augmenting Paths for Matchings
(© Ernst Mayr, Harald Racke



How to find an augmenting path?

Construct an alternating tree.
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Algorithm 1 BiMatch(G, match)

1: for x € V do mate[x] — O;

2. v < 0; free — n;

3: while free>1 and v < n do

4: ¥ —r+1

5 if mate[r] = 0 then

6 fori =1 to m do parent[i'] — 0
7: Q < 0; Q.append(r); aug — false;
8 while aug = false and Q # 0 do

9: x — Q.dequeue();
10: if 3y € Ax: mate[y] = 0 then
11: augment(mate, parent,y);
12: aug < true; free — free —1;
13: else
14: if parent[y] = 0 then
15: parent[y] < x;
16: Q.enqueue(y);
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graph G = (SUS',E);
S=1{1,...,n};
S={1,...,n'}

initial matching empty

free: number of
unmatched nodes in S

¥: root of current tree

if ¥ is unmatched
start tree construction

initialize empty tree

no augmen. path but
unexamined leaves

free neighbour found

add new node y to Q



21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment
» Input: undirected, bipartite graph G = L UR,E.
» an edge e = (£,7) has weight w, = 0

» find a matching of maximum weight, where the weight of a
matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):
» assume that [L| = |R| =n

» assume that there is an edge between every pair of nodes
@, r)evxvVv
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Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph G = (L U R, E) has a perfect matching if and
only if for all sets S < L, |[T'(S)| = |S|, whereI'(S) denotes the set
of nodes in R that have a neighbour in S.
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.
= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
» Let S denote a minimum cutand let Lg < L. NS and

Rs # R N S denote the portion of S inside L and R,
respectively.
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= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.
» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.
» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.
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Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].
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Halls Theorem

Proof:

< Of course, the condition is necessary as otherwise not all
nodes in S could be matched to different neigbhours.

= For the other direction we need to argue that the minimum
cut in the graph G’ is at least |L|.

» Let S denote a minimum cutand let Lg < L. NS and
Rs ¢ R N S denote the portion of S inside L and R,
respectively.

» Clearly, all neighbours of nodes in Ls have to be in S, as
otherwise we would cut an edge of infinite capacity.

» This gives Rs > |[I'(Ls)]|.

» The size of the cutis |L| — |Lg| + |Rg].

» Using the fact that |T'(Ls)| > Lg gives that this is at least |L].
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Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.
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Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).
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Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = (u,v).
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Algorithm Outline

Idea:
We introduce a node weighting X. Let foranode v € V, xy = 0
denote the weight of node v.

» Suppose that the node weights dominate the edge-weights in
the following sense:

Xy + Xy = W, for every edge e = (u,v).

» Let H(X) denote the subgraph of G that only contains edges
that are tight w.r.t. the node weighting X, i.e. edges
e = (u,v) for which w, = (u,v).

» Try to compute a perfect matching in the subgraph H(x). If
you are successful you found an optimal matching.
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Algorithm Outline

Reason:

» The weight of your matching M* is

D, Wauw = D, (utx) =2 Xy,

(u,v)eM* (u,v)eM* v

» Any other matching M has

D> Wy = D (Xu+xy) <D Xy

(w,v)eM (u,v)eM v
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
» the total weight assigned to nodes decreases

» the weight function still dominates the edge-weights
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Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S < L, with
IT(S)| < |S|, where I denotes the neighbourhood w.r.t. the
subgraph H(x).

Idea: reweight such that:
» the total weight assigned to nodes decreases
» the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an
optimal solution (we analyze the running time later).
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Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the

node-weights in S by —9.
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Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.
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Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight.
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Changing Node Weights

Increase node-weights in I'(S) by +96, and decrease the
node-weights in S by —9.

» Total node-weight decreases.

» Only edges from S to R —T'(S)
decrease in their weight. +6|I(S)

» Since, none of these edges is
tight (otw. the edge would be
contained in H(X), and hence sles
would go between S and I'(S))
we can do this decrement for
small enough 6 > 0 until a new
edge gets tight.
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Weighted Bipartite Matching

Edges not drawn have weight 0.
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Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke



Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke



Weighted Bipartite Matching

Edges not drawn have weight 0.

EADS 21 Weighted Bipartite Matching
(© Ernst Mayr, Harald Racke
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Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.
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Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).
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Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).
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Analysis

How many iterations do we need?

» One reweighting step increases the number of edges out of §
by at least one.

» Assume that we have a maximum matching that saturates
the set I'(S), in the sense that every node in I'(S) is matched
to a node in S (we will show that we can always find S and a
matching such that this holds).

» This matching is still contained in the new graph, because all
its edges either go between I'(S) and S or between L — S and
R -T(S).

» Hence, reweighting does not decrease the size of a
maximum matching in the tight sub-graph.
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Analysis

» We will show that after at most n reweighting steps the size
of the maximum matching can be increased by finding an
augmenting path.

» This gives a polynomial running time.
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Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.
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Analysis

How do we find §?
» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).
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Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.
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Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

» If this construction stops, there is no perfect matching in the
tight subgraph (because for a perfect matching we need to
find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, [Voddl = IT (Veven)| < [Vevenl, and all odd vertices are
saturated in the current matching.
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Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).
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Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge

connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.
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Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge

connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).
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» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.
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Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.

» In total we otain a running time of @ (n%).
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Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veyen to a node outside of Vyqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time @(n?)
(keeping track of the tight edges).

» An augmentation takes at most O (n) time.
» In total we otain a running time of @ (n%).

» A more careful implementation of the algorithm obtains a
running time of ©(n3).
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A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let 7 = {P1,...,Px} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M<—MGB(P1U---UPk)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:
» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.
» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.
» The connected components of G are cycles and paths.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist

IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M @ M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k ¢ |[M*| — [M| more red edges than
blue edges.
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Analysis

Lemma 98
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

|

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in this
graph blue if they are in M and red if they are in M*.

The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are augmenting
paths w.r.t. M.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.
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Analysis

» Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

»Me<MoPLU---UPL)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

Lemma 99
Theset A<Mae (M @®P)=(PLU---UPy)®P contains at least

(k + 1)¥ edges.
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Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke



Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.

EADS

22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke



Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as [M’| = |[M| + k + 1.

» Each of these paths is of length at least £.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

» If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

» This edge is not contained in A.

» Hence, |A| < k€ + |P| - 1.
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Analysis

Lemma 100

P is of length at least £ + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.

>

If P does not intersect any of the Py,..., Py, this follows from
the maximality of the set {Py,...,Py}.

Otherwise, at least one edge from P coincides with an edge
from paths {Py,..., Py}.

This edge is not contained in A.

Hence, |A| < k€ + |P| - 1.

The lower bound on |A| gives (k +1)f < |A| < k€ + |P| -1,
and hence |P| > ¥ + 1.
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Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges
then the cardinality of the maximum matching is of size at most

IM + |2k

EADS 22 The Hopcroft-Karp Algorithm
(© Ernst Mayr, Harald Racke



Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most

IM + |2k

Proof.
The symmetric difference between M and M* contains |[M*| — M|

vertex-disjoint augmenting paths. Each of these paths contains at

least £ + 1 vertices. Hence, there can be at most }% of them.
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Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.
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Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration |+/|V]] the length of a shortest augmenting
path must be at least |[/|V]] +1 = /|V].

» Hence, there can be at most |V |/(y/|V|+ 1) < /|V]|
additional augmentations.
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Analysis

Lemma 102
One phase of the Hopcroft-Karp algorithm can be implemented in
time O(m).
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How to find an augmenting path?

Construct an alternating tree.

/O O

even nodes
odd nodes

O

Case 4:
v is already contained
in T as an even vertex

AN
Q

-
TN

can’t ignore y

/\
OO0 d o b

.0 O O O O
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How to find an augmenting path?

Construct an alternating tree.

N\ e
p % U/

O
oo
O

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

O

in T as an even vertex

can’t ignore y
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How to find an augmenting path?

Construct an alternating tree.

N\ e
p % U/

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

in T as an even vertex

O

” N Y1 I\
) Oy ),

O

can’t ignore y

Thecyclew « y —x < w is
called a blossom.

w is called the base of the
blossom (even nodel!l!).

The path u-w path is called
the stem of the blossom.
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Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:
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Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)

root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).
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Flowers and Blossoms

Definition 103
A flower in a graph G = (V, E) w.r.t. a matching M and a (free)
root node 7, is a subgraph with two components:

» A stem is an even length alternating path that starts at the
root node ¥ and terminates at some node w. We permit the
possibility that ¥ = w (empty stem).

» A blossom is an odd length alternating cycle that starts and
terminates at the terminal node w of a stem and has no
other node in common with the stem. w is called the base of
the blossom.
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Flowers and Blossoms

(A ()
—O—CO—=G
() ()
—O0—0—=C
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Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.
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Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.
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Flowers and Blossoms

Properties:

1. A stem spans 2¢ + 1 nodes and contains £ matched edges for
some integer £ > 0.

2. A blossom spans 2k + 1 nodes and contains k matched
edges for some integer k > 1. The matched edges match all
nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of
an alternating tree starting at r).
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Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.
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Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable
from the root (or from the base of the blossom) through two
distinct alternating paths; one with even and one with odd
length.

5. The even alternating path to x terminates with a matched
edge and the odd path with an unmatched edge.
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Flowers and Blossoms

O,
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When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke



When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.
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When during the alternating tree construction we discover a
blossom B we replace the graph G by G’ = G/B, which is
obtained from G by contracting the blossom B.

» Delete all vertices in B (and its incident edges) from G.

» Add a new (pseudo-)vertex b. The new vertex b is connected
to all vertices in V' \ B that had at least one edge to a vertex

from B.
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Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.
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Shrinking Blossoms

» Edges of T that connect a node u
not in B to a node in B become
tree edges in T’ connecting u to
b.

» Matching edges (there is at most
one) that connect a node u not in
B to a node in B become matching
edges in M.

» Nodes that are connected in G to
at least one node in B become
connected to b in G'.
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Algorithm 55 search(r, found)

1: set A(i) — A(i) for all nodes i
found — false
unlabel all nodes;
give an even label to v and initialize list — {r}
while list = 0 do

delete a node i from list

examine(i, found)

if found = true then

return

PN T2HR
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Algorithm 56 examine(i, found)

1: forall j € A(i) do

2 if j is even then contract(i, j) and return
3 if j is unmatched then

4 a-J,

5 pred(q) < i;

6: found — true;

7 return

8 if j is matched and unlabeled then

2 pred(j) < i;

0 pred(mate(j)) < j;

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke



Algorithm 57 contract(i, j)

: trace pred-indices of i and j to identify a blossom B
create new node b and set A(b) — UxepA(k)

label b even and add to list

update A(j) — A(j) u {b} for each j € A(b)

form a circular doubly linked list of nodes in B
delete nodes in B from the graph

ChU'I-l}UJN—'
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Assume that we have contracted a blossom B w.r.t. a matching M
whose base is w. We created graph G’ = G/B with pseudonode b.
Let M’ be the matching in the contracted graph.
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Assume that we have contracted a blossom B w.r.t. a matching M
whose base is w. We created graph G’ = G/B with pseudonode b.
Let M’ be the matching in the contracted graph.

Lemma 104

If G' contains an augmenting path p’ starting at v (or the
pseudo-node containing v) w.r.t. to the matching M’ then G
contains an augmenting path starting at v w.r.t. matching M.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke



Proof.

If p” does not contain b it is also an augmenting path in G.
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Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.
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Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.
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Proof.
If p” does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

» Next suppose that the stem is non-empty.

@ ......... 0 0 9 ......... @
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» After the expansion £ must be incident to some node in the
blossom. Let this node be k.

» If k # w there is an alternating path P> from w to k that
ends in a matching edge.

» P1o(i,w)oPyo (k,¥) o P3is an alternating path.
» If k = w then P; o (i,w) o (w,¥) o P3 is an alternating path.
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Proof.

Case 2: empty stem

» If the stem is empty then after expanding the blossom,
w="r.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke



Proof.

Case 2: empty stem
» If the stem is empty then after expanding the blossom,

w=r.
—@ @
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Proof.

Case 2: empty stem
» If the stem is empty then after expanding the blossom,

w=r.
—@ @
P3
() (K )———(F) -
O K © @
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Proof.

Case 2: empty stem

» If the stem is empty then after expanding the blossom,
w="r.

» The path 7 o P> o (k,¥) o P3 is an alternating path.
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Lemma 105

If G contains an augmenting path P from v to q w.r.t. matching
M then G’ contains an augmenting path from v (or the
pseudo-node containing v) to q w.r.t. M'.
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Proof.
» If P does not contain a node from B there is nothing to prove.
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Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.
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Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
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Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
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Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P; o (i, j) o P>, for some node j and (i, j) is
unmatched.
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Proof.
» If P does not contain a node from B there is nothing to prove.
» We can assume that ¥ and g are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

P is of the form P; o (i, j) o P>, for some node j and (i, j) is
unmatched.

(b, j) o P> is an augmenting path in the contracted network.
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Case 2: non-empty stem
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Case 2: non-empty stem

Let P3 be alternating path from v to w. Define M, = M & P3.
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Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.

In M., v is matched and w is unmatched.
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Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.
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Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.
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Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.
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Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M’ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

EADS 23 Maximum Matching in General Graphs
(© Ernst Mayr, Harald Racke



Case 2: non-empty stem
Let P3 be alternating path from v to w. Define M, = M & P3.
In M, v is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M., since M
and M, have same cardinality.

This path must go between w and g as these are the only
unmatched vertices w.r.t. M,.

For M. the blossom has an empty stem. Case 1 applies.

G’ has an augmenting path w.r.t. M’ . It must also have an
augmenting path w.r.t. M’, as both matchings have the same
cardinality.

This path must go between ¥ and q.
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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Example: Blossom Algorithm
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