

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Matching

- Input: undirected graph G = (V, E).
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- A matching *M* is perfect if it is of cardinality |M| = |V|/2.
- ► For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- ► *f* is a flow and has cardinality *k*.

19 Bipartite Matching via Flows

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.

19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

	19 Bipartite Matching via Flows	
C Ernst Mayr, Harald Räcke	······································	545
		515

20 Augmenting Paths for Matchings

Definitions.

- ► Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

	20 Augmenting Paths for Matchings	
EADS © Ernst Mayr, Harald Räcke		546

20 Augmenting Paths for Matchings

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching M' = M ⊕ P with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

EADS © Ernst Mayr, Harald Räcke	20 Augmenting Paths for Matchings
📋 📋 🕜 Ernst Mayr, Harald Räcke	

20 Augmenting Paths for Matchings

Proof

549

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (\mathfrak{I}).

EADS 20 Augmenting Paths for Matchings © Ernst Mayr, Harald Räcke 550

Algo	prithm 1 BiMatch(G, match)	graph $G = (S \cup S', E);$ $S = \{1,, n\};$
1: f	or $x \in V$ do mate[x] $\leftarrow 0$;	$S = \{1, \dots, n\},\$ $S = \{1', \dots, n'\}$
2: <i>1</i>	$r \leftarrow 0$; free $\leftarrow n$;	$5 = \{1,, n\}$
3: v	while $free \ge 1$ and $r < n$ do	initial matching empty
	$r \leftarrow r + 1$ if $mate[r] = 0$ then for $i = 1$ to m do $parent[i'] \leftarrow 0$	<i>free</i> : number of unmatched nodes in <i>S</i>
7:	$Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;	r: root of current tree
8: 9: 10:	while aug = false and $Q \neq \emptyset$ do $x \leftarrow Q$. dequeue(); if $\exists y \in A_x$: $mate[y] = 0$ then	if r is unmatched start tree construction
11:	augment(<i>mate</i> , <i>parent</i> , y);	initialize empty tree
12: 13: 14:	$aug \leftarrow true; free \leftarrow free - 1;$ else if parent[γ] = 0 then	no augmen. path but unexamined leaves
15:	$parent[y] \leftarrow x;$	free neighbour found
16:	Q.enqueue(y);	add new node γ to Q

How to find an augmenting path?

Construct an alternating tree.

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

• assume that |L| = |R| = n

EADS

EADS © Ernst Mayr, Harald Räcke

• assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching
🛛 🕒 🛛 🗶 🛈 Ernst Mayr, Harald Räcke	

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

• Suppose that the node weights dominate the edge-weights in the following sense:

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = (u, v)$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

EADS

559

557

Halls Theorem

Proof:

- ← Of course, the condition is necessary as otherwise not all nodes in *S* could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching	
🛛 🛄 🗍 😨 Ernst Mayr, Harald Räcke		558

Algorithm Outline

Reason:

EADS

© Ernst Mayr, Harald Räcke

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

• Any other matching *M* has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u+x_v) \leq \sum_v x_v \ .$$

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

	21 Weighted Bipartite Matching	
🛛 🕒 🛛 🖉 © Ernst Mayr, Harald Räcke	5 . 5	561

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- ► Only edges from S to R − Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in H(x
), and hence would go between S and Γ(S)) we can do this decrement for small enough δ > 0 until a new edge gets tight.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching
🛛 🕒 🛛 🖸 🕲 Ernst Mayr, Harald Räcke	

Analysis

How many iterations do we need?

One reweighting step increases the number of edges out of S by at least one.

 $S = \delta$

- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

 $+\delta \Gamma(S)$

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching
🛛 🛄 🔲 🕜 Ernst Mayr, Harald Räcke	

Analysis

- The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

Analysis

How do we find S?

EADS © Ernst Mayr, Harald Räcke

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

EADS © Ernst Mayr, Harald Räcke	21 Weighted Bipartite Matching	
🛛 💾 🗋 🕻 🕲 Ernst Mayr, Harald Räcke		566

A Fast Matching Algorithm Algorithm 54 Bimatch-Hopcroft-Karp(G) 1: $M \leftarrow \emptyset$ 2: repeat 3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of 4: vertex-disjoint, shortest augmenting path w.r.t. M. 5: $M \leftarrow M \oplus (P_1 \cup \dots \cup P_k)$ 6: until $\mathcal{P} = \emptyset$ 7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

EADS © Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm
🛛 🛄 🗋 🕃 Ernst Mayr, Harald Räcke	

Analysis

Proof.

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Analysis

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \stackrel{\text{\tiny def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

EADS 22 The Hopcroft-Karp Algorithm © Ernst Mayr, Harald Räcke

570

Analysis

Lemma 100

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

EADS

|||||||| © Ernst Mayr, Harald Räcke

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- This edge is not contained in *A*.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M + |\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

EADS © Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm

Analysis

Lemma 102

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

EADS © Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

575

573

Analysis

Lemma 101

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

EADS 2 © Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

Flowers and Blossoms

Definition 103

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

EADS 23 Ma © Ernst Mayr, Harald Räcke	ximum Matching in General Graphs
--	----------------------------------

Flowers and Blossoms

Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

EADS

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

579

Flowers and Blossoms EADS © Ernst Mayr, Harald Räcke EADS 23 Maximum Matching in General Graphs 581

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from G by contracting the blossom B.

- Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

EADS © Ernst Mayr, Harald Räcke	23 Maximum Matching in General Graphs

٩igo	rithm 55 search(<i>r</i> , <i>found</i>)	
1: S	et $\overline{A}(i) \leftarrow A(i)$ for all nodes i	
2: f	<i>bund</i> ← false	
3: u	nlabel all nodes;	
4: g	ive an even label to r and initialize $list \leftarrow \{r\}$	
5: N	while $list \neq \emptyset$ do	
6:	delete a node <i>i</i> from <i>list</i>	
7:	examine(<i>i</i> , <i>found</i>)	
8:	if <i>found</i> = true then	
9:	return	

EADS

	for all $j \in \overline{A}(i)$ do
2:	if j is even then contract (i, j) and return
3:	if <i>j</i> is unmatched then
4:	$q \leftarrow j;$
5:	$\operatorname{pred}(q) \leftarrow i;$
6:	<i>found</i> \leftarrow true;
7:	return
8:	if <i>j</i> is matched and unlabeled then
9:	$pred(j) \leftarrow i;$
10:	$pred(mate(j)) \leftarrow j;$

Example: Blossom Algorithm

 Image: Market State Sta

Assume that we have contracted a blossom B w.r.t. a matching M whose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 104

585

If G' contains an augmenting path p' starting at r (or the pseudo-node containing r) w.r.t. to the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Proof.

If p' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom,
 w = r.

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Lemma 105

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

	23 Maximum Matching in General Graphs		
UUUC Ernst Mayr, Harald Räcke		593	l

Case 2: non-empty stem

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

