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3 Goals

ñ Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

ñ Learn how to analyze and judge the efficiency of algorithms.

ñ Learn how to design efficient algorithms.
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4 Modelling Issues

What do you measure?

ñ Memory requirement

ñ Running time

ñ Number of comparisons

ñ Number of multiplications

ñ Number of hard-disc accesses

ñ Program size

ñ Power consumption

ñ . . .

EADS 4 Modelling Issues
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4 Modelling Issues

How do you measure?

ñ Implementing and testing on representative inputs
ñ How do you choose your inputs?
ñ May be very time-consuming.
ñ Very reliable results if done correctly.
ñ Results only hold for a specific machine and for a specific set

of inputs.

ñ Theoretical analysis in a specific model of computation.
ñ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
ñ Typically focuses on the worst case.
ñ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

ñ the size of the input (number of bits)

ñ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.
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Turing Machine

ñ Very simple model of computation.

ñ Only the “current” memory location can be altered.

ñ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

ñ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

. . . . . .
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Random Access Machine (RAM)

ñ Input tape and output tape (sequences of zeros and ones;

unbounded length).

ñ Memory unit: infinite but countable number of registers

R[0], R[1], R[2], . . . .
ñ Registers hold integers.

ñ Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-
vances its tape.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

. . . . . .

. . . . . .
.
.
.
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Random Access Machine (RAM)

Operations

ñ input operations (input tape → R[i])
ñ READ i

ñ output operations (R[i]→ output tape)
ñ WRITE i

ñ register-register transfers
ñ R[j] := R[i]
ñ R[j] := 4

ñ indirect addressing
ñ R[j] := R[R[i]]

loads the content of the register number R[i] into register
number j
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Random Access Machine (RAM)

Operations

ñ branching (including loops) based on comparisons
ñ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

ñ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

ñ jumpi i
jump to R[i] (indirect jump);

ñ arithmetic instructions: +, −, ×, /
ñ R[i] := R[j] + R[k];
R[i] := -R[k];

The jump-directives are very close to the
jump-instructions contained in the as-
sembler language of real machines.
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Model of Computation

ñ uniform cost model

Every operation takes time 1.

ñ logarithmic cost model
The cost depends on the content of memory cells:

ñ The time for a step is equal to the largest operand involved;
ñ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed w, where usually w = log2n.

The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n
must be at least log2 n as otherwise the computer could
either not store the problem instance or not address all
its memory.
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

ñ running time:
ñ uniform model: n steps
ñ logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

ñ space requirement:
ñ uniform model: O(1)
ñ logarithmic model: O(2n)
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C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

There are different types of complexity bounds:

ñ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

ñ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
ñ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)
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There are different types of complexity bounds:

ñ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

ñ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.
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5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymtotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

EADS 5 Asymptotic Notation

c© Ernst Mayr, Harald Räcke 27

Asymptotic Notation

Formal Definition

Let f denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N to

R+.

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.
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Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) ≤ f(n)+ z(n).

3. This is particularly useful if you do not
want to ignore constant factors. For ex-
ample the median of n elements can
be determined using 3

2n+o(n) compar-
isons.

2. In this context f(n) does not mean the
function f evaluated at n, but instead
it is a shorthand for the function itself
(leaving out domain and codomain and
only giving the rule of correspondence
of the function).
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Asymptotic Notation

Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.
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Asymptotic Notation

Lemma 3
Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).
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Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.
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6 Recurrences

Algorithm 2 mergesort(listL)
1: s ← size(L)
2: if s ≤ 1 return L
3: L1 ← L[1 · · · b s2c]
4: L2 ← L[d s2e · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) ≤ 2T
(⌈n

2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.
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Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.
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6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
 2T

(⌈n
2

⌉)+ cn n ≥ 2

0 otherwise

Assume that instead we had

T(n) ≤
 2T

(n
2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.
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6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(n

2
log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
= dn logn

if we choose d ≥ c.

Formally one would make an induction proof, where the above is

the induction step. The base case is usually trivial.
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6.1 Guessing+Induction

• Note that this proves the
statement for n ∈ N≥2, as the
statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
 2T

(n
2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

ñ base case (2 ≤ n < 16): true if we choose d ≥ b.

ñ induction step 2 . . . n− 1→ n:

Suppose statem. is true for n′ ∈ {2, . . . , n− 1}, and n ≥ 16.

We prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(n

2
log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
= dn logn

Hence, statement is true if we choose d ≥ c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

T(n) ≤
 2T(

⌈n
2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).
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6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn
≤ dn log

( 9
16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
= dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4
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6.2 Master Theorem

Lemma 4
Let a ≥ 1, b ≥ 1 and ε > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ε) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n).

Case 3.

If f(n) = Ω(nlogb(a)+ε) and for sufficiently large n
af(nb ) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

b`, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb )

a2f( nb2 )

alogbn

nlogba
=

n

n
b

n
b

n
b

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

11111111 1 1 1 1 1 1 1

a

aaa

a a a a a a a a a
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6.2 Master Theorem

This gives

T(n) = nlogb a +
logb n−1∑
i=0

aif
(
n
bi

)
.
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Case 1. Now suppose that f(n) ≤ cnlogb a−ε.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a−ε

= cnlogb a−ε
logb n−1∑
i=0

(
bε
)i

= cnlogb a−ε(bε logb n − 1)/(bε − 1)

= cnlogb a−ε(nε − 1)/(bε − 1)

= c
bε − 1

nlogb a(nε − 1)/(nε)

Hence,

T(n) ≤
(

c
bε − 1

+ 1
)
nlogb(a)

∑k
i=0 qi = qk+1−1

q−1

b−i(logb a−ε) = bεi(blogb a)−i = bεia−i

⇒ T(n) = O(nlogb a).
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Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).
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Case 2. Now suppose that f(n) ≥ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≥ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).
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Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a
·
(

logb

(
n
bi

))k

= cnlogb a
`−1∑
i=0

(
logb

(
b`

bi

))k

= cnlogb a
`−1∑
i=0

(` − i)k

= cnlogb a
∑̀
i=1

ik

≈ c
k
nlogb a`k+1

n = b` ⇒ ` = logb n

∑̀
i=1

ik ≈ 1
k`
k+1

⇒ T(n) = O(nlogb a logk+1n).
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Case 3. Now suppose that f(n) ≥ dnlogb a+ε, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif(n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

=
logb n−1∑
i=0

cif(n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
∑n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit

integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

• This is also nown as the “school
method” for multiplying integers.

• Note that the intermediate num-
bers that are generated can have
at most m+n ≤ 2n bits.

Time requirement:

ñ Computing intermediate results: O(nm).
ñ Adding m numbers of length ≤ 2n: O((m+n)m) = O(nm).
EADS 6.2 Master Theorem
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB × . . .. . . . . . . . .. . . . . . a0anb0bn an
2−1an

2
bn

2−1bn
2

B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0 · B0
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z1 ←mult(A1, B0)+mult(A0, B1)
7: Z0 ←mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)

We get the following recurrence:

T(n) = 4T
(n

2

)
+O(n) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−ε) = O(nlogb a−ε).

We get a running time of O(n2) for our algorithm.

⇒ Not better then the “school method”.
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

= Z2︷ ︸︸ ︷
A1B1

= Z0︷ ︸︸ ︷
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z0 ←mult(A0, B0)
7: Z1 ←mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
(n

2

)
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (c0, ck ≠ 0).

ñ T(n) only depends on the k preceding values. This means

the recurrence relation is of order k.

ñ The recurrence is linear as there are no products of T[n]’s.

ñ If f(n) = 0 then the recurrence relation becomes a linear,

homogenous recurrence relation of order k.
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6.3 The Characteristic Polynomial

Observations:

ñ The solution T[0], T[1], T[2], . . . is completely determined

by a set of boundary conditions that specify values for

T[0], . . . , T [k− 1].
ñ In fact, any k consecutive values completely determine the

solution.

ñ k non-concecutive values might not be an appropriate set of

boundary conditions (depends on the problem).

Approach:

ñ First determine all solutions that satisfy recurrence relation.

ñ Then pick the right one by analyzing boundary conditions.

ñ First consider the homogenous case.
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The Homogenous Case

The solution space

S =
{
T = T[0], T[1], T[2], . . . ∣∣ T fulfills recurrence relation

}
is a vector space. This means that if T1, T2 ∈ S, then also

αT1 + βT2 ∈ S, for arbitrary constants α,β.

How do we find a non-trivial solution?

We guess that the solution is of the form λn, λ ≠ 0, and see what

happens. In order for this guess to fulfill the recurrence we need

c0λn + c1λn−1 + c2 · λn−2 + · · · + ck · λn−k = 0

for all n ≥ k.
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The Homogenous Case

Dividing by λn−k gives that all these constraints are identical to

c0λk + c1λk−1 + c2 · λk−2 + · · · + ck = 0c0λk + c1λk−1 + c2 · λk−2 + · · · + ck︸ ︷︷ ︸
characteristic polynomial P[λ]

This means that if λi is a root (Nullstelle) of P[λ] then T[n] = λni
is a solution to the recurrence relation.

Let λ1, . . . , λk be the k (complex) roots of P[λ]. Then, because of

the vector space property

α1λn1 +α2λn2 + · · · +αkλnk

is a solution for arbitrary values αi.
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The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk. Then all solutions to the recurrence relation are of the

form

α1λn1 +α2λn2 + · · · +αkλnk .

Proof.
There is one solution for every possible choice of boundary

conditions for T[1], . . . , T [k].

We show that the above set of solutions contains one solution for

every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

α1 · λ1 + α2 · λ2 + · · · + αk · λk = T[1]

α1 · λ2
1 + α2 · λ2

2 + · · · + αk · λ2
k = T[2]

...

α1 · λk1 + α2 · λk2 + · · · + αk · λkk = T[k]
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

λ1 λ2 · · · λk
λ2

1 λ2
2 · · · λ2

k
...

λk1 λk2 · · · λkk





α1

α2

...

αk

 =


T[1]

T[2]
...

T[k]


We show that the column vectors are linearly independent. Then

the above equation has a solution.
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The Homogenous Case

Proof (cont.).

This we show by induction:

ñ base case (k = 1):

A vector (λi), λi ≠ 0 is linearly independent.

ñ induction step (k→ k+ 1):

assume for contradiction that there exist αi’s with

α1



λ1

...

λk−1
1

λk1

+ · · · +αk


λk
...

λk−1
k

λkk

 = 0

and not all αi = 0. Then all αi ≠ 0!
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The Homogeneous Case

α1



λ1

λ2
1

...

λk−1
1

λk1


+ · · · +αk



λ1

λ2
k
...

λk−1
k

λkk


= 0

λ1

λk−1
1

v1 := λ1

λk−1
k

vk :=
λ2

1

λk1λ1v1 =

λ2
k

λkkλkvk =

λ1

λ2
1

...

λk−1
1

λk1

λ1

λ2
k
...

λk−1
k

λkk

This means that

k∑
i=1

αivi = 0 and
k∑
i=1

λiαivi = 0

Hence,

k−1∑
i=1

αivi +αkvk = 0 and − 1
λk

k−1∑
i=1

λiαivi = αkvk
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The Homogeneous Case

This gives that
k−1∑
i=1

(1− λi
λk
)αivi = 0 .

This is a contradiction as the vi’s are linearly independent

because of induction hypothesis.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λi with multiplicity (Vielfachheit) at least

2. Then not only is λni a solution to the recurrence but also nλni .

To see this consider the polynomial

P(λ)λn−k = c0λn + c1λn−1 + c2λn−2 + · · · + ckλn−k

Since λi is a root we can write this as Q(λ)(λ− λi)2. Calculating

the derivative gives a polynomial that still has root λi.

This means

c0nλn−1
i + c1(n− 1)λn−2

i + · · · + ck(n− k)λn−k−1
i = 0

Hence,

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0︸ ︷︷ ︸

T[n]
︸ ︷︷ ︸

T[n−1]
︸ ︷︷ ︸

T[n−k]
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The Homogeneous Case

Suppose λi has multiplicity j. We know that

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0

(after taking the derivative; multiplying with λ; plugging in λi)

Doing this again gives

c0n2λni + c1(n− 1)2λn−1
i + · · · + ck(n− k)2λn−ki = 0

We can continue j − 1 times.

Hence, n`λni is a solution for ` ∈ 0, . . . , j − 1.
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The Homogeneous Case

Lemma 6
Let P[λ] denote the characteristic polynomial to the recurrence

c0T[n]+ c1T[n− 1]+ · · · + ckT[n− k] = 0

Let λi, i = 1, . . . ,m be the (complex) roots of P[λ] with

multiplicities `i. Then the general solution to the recurrence is

given by

T[n] =
m∑
i=1

`i−1∑
j=0

αij · (njλni ) .

The full proof is omitted. We have only shown that any choice of

αij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0] = 0

T[1] = 1

T[n] = T[n− 1]+ T[n− 2] for n ≥ 2

The characteristic polynomial is

λ2 − λ− 1

Finding the roots, gives

λ1/2 = 1
2
±
√

1
4
+ 1 = 1

2

(
1±

√
5
)
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Example: Fibonacci Sequence

Hence, the solution is of the form

α
(

1+√5
2

)n
+ β

(
1−√5

2

)n

T[0] = 0 gives α+ β = 0.

T[1] = 1 gives

α
(

1+√5
2

)
+ β

(
1−√5

2

)
= 1 =⇒ α− β = 2√

5
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Example: Fibonacci Sequence

Hence, the solution is

1√
5

[(
1+√5

2

)n
−
(

1−√5
2

)n]
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The Inhomogeneous Case

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

with f(n) ≠ 0.

While we have a fairly general technique for solving homogeneous,

linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is

T(n) = Th(n)+ Tp(n) ,

where Th is any solution to the homogeneous equation, and Tp is

one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:

T[n] = T[n− 1]+ 1 T[0] = 1

Then,

T[n− 1] = T[n− 2]+ 1 (n ≥ 2)

Subtracting the first from the second equation gives,

T[n]− T[n− 1] = T[n− 1]− T[n− 2] (n ≥ 2)

or

T[n] = 2T[n− 1]− T[n− 2] (n ≥ 2)

I get a completely determined recurrence if I add T[0] = 1 and

T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

λ2 − 2λ+ 1 = 0λ2 − 2λ+ 1︸ ︷︷ ︸
(λ−1)2

Then the solution is of the form

T[n] = α1n + βn1n = α+ βn

T[0] = 1 gives α = 1.

T[1] = 2 gives 1+ β = 2 =⇒ β = 1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1
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T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...
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6.4 Generating Functions

Definition 7 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

ñ generating function (Erzeugendenfunktion) is

F(z) :=
∞∑
n=0

anzn;

ñ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) =
∑
n≥0

an
n!
zn.
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑∞n=0 anzn and g =∑∞n=0 bnzn.

ñ Equality: f and g are equal if an = bn for all n.

ñ Addition: f + g :=∑∞n=0(an + bn)zn.

ñ Multiplication: f · g :=∑∞n=0 cnzn with c =∑np=0 apbn−p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.
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6.4 Generating Functions

What does
∑∞
n=0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑∞
n=0 zn are invers, i.e.,

(
1− z

)
·
( ∞∑
n=0

zn
)
= 1 .

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating function

∞∑
n=0

zn = 1
1− z .

We can compute the derivative:

∑
n≥1

nzn−1 = 1
(1− z)2

∑
n≥1

nzn−1

︸ ︷︷ ︸∑∞
n=0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.
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6.4 Generating Functions

We can repeat this

∞∑
n=0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑
n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑
n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑∞
n=0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)2 .

EADS 6.4 Generating Functions

c© Ernst Mayr, Harald Räcke 85

6.4 Generating Functions

Computing the k-th derivative of
∑
zn.∑

n≥k
n(n− 1) . . . (n− k+ 1)zn−k =

∑
n≥0

(n+ k) . . . (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑
n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1
(1−z)k+1 .
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6.4 Generating Functions

∑
n≥0

nzn =
∑
n≥0

(n+ 1)zn −
∑
n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .
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6.4 Generating Functions

We know ∑
n≥0

yn = 1
1−y

Hence,

∑
n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .
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6.4 Generating Functions

Suppose we have again the recurrence an = an−1 + 1 for n ≥ 1

and a0 = 1.

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

(an−1 + 1)zn

= 1+ z
∑
n≥1

an−1zn−1 +
∑
n≥1

zn

= z
∑
n≥0

anzn +
∑
n≥0

zn

= zA(z)+
∑
n≥0

zn

= zA(z)+ 1
1− z
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6.4 Generating Functions

Solving for A(z) gives

∑
n≥0

anzn = A(z) = 1
(1− z)2 =

∑
n≥0

(n+ 1)zn

Hence, an = n+ 1.
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Some Generating Functions

n-th sequence element generating function

1
1

1− z

n+ 1
1

(1− z)2(
n+k
n

) 1
(1− z)k+1

n
z

(1− z)2

an 1
1− az

n2 z(1+ z)
(1− z)3

1
n!

z(1+ z)
(1− z)3
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Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)
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Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

ñ partial fraction decomposition (Partialbruchzerlegung)
ñ lookup in tables

6. The coefficients of the resulting power series are the an.
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Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn

2. Transform right hand side so that recurrence can be plugged

in:

A(z) = a0 +
∑
n≥1

anzn

2. Plug in:

A(z) = 1+
∑
n≥1

(2an−1)zn
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Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑
n≥1

(2an−1)zn

= 1+ 2z
∑
n≥1

an−1zn−1

= 1+ 2z
∑
n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z
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Example: an = 2an−1, a0 = 1

5. Rewrite f(n) as a power series:

∑
n≥0

anzn = A(z) = 1
1− 2z

=
∑
n≥0

2nzn
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Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn
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Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

anzn

= 1+
∑
n≥1

(3an−1 +n)zn

= 1+ 3z
∑
n≥1

an−1zn−1 +
∑
n≥1

nzn

= 1+ 3z
∑
n≥0

anzn +
∑
n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2
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Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4
B = −1

4
C = −1

2

EADS 6.4 Generating Functions

c© Ernst Mayr, Harald Räcke 100

Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑
n≥0

3nzn − 1
4
·
∑
n≥0

zn − 1
2
·
∑
n≥0

(n+ 1)zn

=
∑
n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .
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6.5 Transformation of the Recurrence

Example 9
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1, g0 = 0 (fÃČÅŠr log = log2 )

gn = Fn (n-th Fibonacci number)

fn = 2Fn
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6.5 Transformation of the Recurrence

Example 10
f1 = 1

fn = 3fn
2
+n; for n = 2k ;

Define

gk := f2k .
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6.5 Transformation of the Recurrence

Example 10

Then:
g0 = 1

gk = 3gk−1 + 2k, k ≥ 1

We get,

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .
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