
Part III

Data Structures

EADS

c© Ernst Mayr, Harald Räcke 104/596

Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a

defined behavior

The data types in this lecture all operate on objects that are

represented by a [key, value] pair.

ñ The key comes from a totally ordered set, and we assume

that there is an efficient comparison function.

ñ The value can be anything; it usually carries satellite

information important for the application that uses the ADT.

EADS

c© Ernst Mayr, Harald Räcke 105/596

Dynamic Set Operations

ñ S. search(k): Returns pointer to object x from S with

key[x] = k or null.

ñ S. insert(x): Inserts object x into set S. key[x] must not

currently exist in the data-structure.

ñ S. delete(x): Given pointer to object x from S, delete x
from the set.

ñ S.minimum(): Return pointer to object with smallest

key-value in S.

ñ S.maximum(): Return pointer to object with largest

key-value in S.

ñ S. successor(x): Return pointer to the next larger element

in S or null if S is maximum.

ñ S. predecessor(x): Return pointer to the next smaller

element in S or null if S is minimum.

EADS

c© Ernst Mayr, Harald Räcke 106/596

Dynamic Set Operations

ñ S. union(S′): Sets S := S ∪ S′. The set S′ is destroyed.

ñ S.merge(S′): Sets S := S ∪ S′. Requires S ∩ S′ = �.
ñ S. split(k, S′):
S := {x ∈ S | key[x] ≤ k}, S′ := {x ∈ S | key[x] > k}.

ñ S. concatenate(S′): S := S ∪ S′.
Requires S.maximum() ≤ S′.minimum().

ñ S. decrease-key(x, k): Replace key[x] by k ≤ key[x].

EADS

c© Ernst Mayr, Harald Räcke 107/596

Examples of ADTs

Stack:

ñ S.push(x): Insert an element.

ñ S.pop(): Return the element from S that was inserted most

recently; delete it from S.

ñ S.empty(): Tell if S contains any object.

Queue:

ñ S.enqueue(x): Insert an element.

ñ S.dequeue(): Return the element that is longest in the

structure; delete it from S.

ñ S.empty(): Tell if S contains any object.

Priority-Queue:

ñ S.insert(x): Insert an element.

ñ S.delete-min(): Return the element with lowest key-value;

delete it from S.

7 Dictionary

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

EADS 7 Dictionary

c© Ernst Mayr, Harald Räcke 109/596

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary

tree. Each tree-node corresponds to an element. All elements in

the left sub-tree of a node v have a smaller key-value than key[v]
and elements in the right sub-tree have a larger-key value. We

assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

6

2 7

1 5 8

1

2

5

6

7

8

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 110/596

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note

that this is a super-set of the dictionary-operations.

ñ T. insert(x)
ñ T. delete(x)
ñ T. search(k)
ñ T. successor(x)
ñ T. predecessor(x)
ñ T.minimum()
ñ T.maximum()

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 111/596

Binary Search Trees: Searching

TreeSearch(root, 17)

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 112/596

Binary Search Trees: Searching

TreeSearch(root, 8)

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 5 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 113/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

Algorithm 6 TreeMin(x)
1: if x = null or left[x] = null return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeMin(left[x])

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 114/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

x

y

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

x

y

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

x

y

Algorithm 7 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 115/596

Binary Search Trees: Insert

Insert element not in the tree.

TreeInsert(root, 20)

25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20)

25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20)

25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This is

the place to insert z.

Algorithm 8 TreeInsert(x, z)
1: if x = null then root[T]← x; return;
2: if key[x] > key[z] then
3: if left[x] = null then left[x]← z;
4: else TreeInsert(left[x], z);
5: else
6: if right[x] = null then right[x]← z;
7: else TreeInsert(right[x], z);
8: return

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 1:

Element does not have any children
ñ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 1:

Element does not have any children
ñ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

48

43

41

42

47

50

55

Case 1:

Element does not have any children
ñ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

ñ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete
25

13 41

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

42

47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete
25

13 41

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29 48

43

42 47

50

55

Case 3:

Element has two children

ñ Find the successor of the element

ñ Splice successor out of the tree

ñ Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x]← parent[y];
6: if parent[y] = null then
7: root[T]← x
8: else
9: if y = left[parent[x]] then

10: left[parent[y]]← x
11: else
12: right[parent[y]]← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)
parent[x] is correct

fix pointer to x

fix pointer to x

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 118/596

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119/596

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119/596

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119/596

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119/596

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

EADS 7.1 Binary Search Trees

c© Ernst Mayr, Harald Räcke 119/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a colour,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 120/596

Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 121/596

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most

O(logn).

Definition 13
The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 122/596

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most

O(logn).

Definition 13
The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 122/596

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most

O(logn).

Definition 13
The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 122/596

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123/596

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123/596

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123/596

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123/596

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 123/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 124/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a

path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≥ n.

Hence, h ≤ 2 logn+ 1 = O(logn).

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 125/596

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red

black properties are maintained.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 126/596

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 127/596

Red Black Trees: Insert

RB-Insert(root, 18)

25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z
Insert:

ñ first make a normal insert into a binary search tree
ñ then fix red-black properties

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 128/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 129/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

Case 1: uncle red

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

Case 2: uncle black

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

2a: z right child

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

2b: z left child

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 130/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

z

A B C D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

A B C D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 131/596

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132/596

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132/596

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132/596

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132/596

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3

A B

C

D E

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 132/596

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

A
B

C
D E

13

3 21

6

B CA D E

z

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133/596

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

A
B

C
D E

13

3 21

6

B CA D E

z

uncle

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133/596

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133/596

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133/596

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 133/596

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing step one O(logn) times and every other step at most

once, we get a red-black tree. Hence O(logn) re-colourings and

at most 2 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 134/596

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing step one O(logn) times and every other step at most

once, we get a red-black tree. Hence O(logn) re-colourings and

at most 2 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 134/596

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing step one O(logn) times and every other step at most

once, we get a red-black tree. Hence O(logn) re-colourings and

at most 2 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 134/596

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing step one O(logn) times and every other step at most

once, we get a red-black tree. Hence O(logn) re-colourings and

at most 2 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 134/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 135/596

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorihtm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 138/596

Red Black Trees: Delete

Invariant of the fix-up algorihtm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 138/596

Red Black Trees: Delete

Invariant of the fix-up algorihtm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 138/596

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

b

a c

d e

z

A B

C D E F

sibling

Here b is either black or red. If it is
red we are in a special case that
directly leads to a red-black tree.

b

a c

d e

z

A B

C D E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

sibling

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

b

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Again the blue color of b indicates
that it can either be black or red.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Case 4: Sibling is black with red right child

1. left-rotate around b

2. recolor nodes b, c, and e

3. remove the fake black unit

4. you have a valid

red black tree

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

• Here b and d are either red or black
but have possibly different colors.

• We recolor c by giving it the color of b.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143/596

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143/596

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143/596

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143/596

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 O(logn) times and every other step at most

once, we get a red black tree. Hence, O(logn) re-colourings and

at most 3 rotations.

EADS 7.2 Red Black Trees

c© Ernst Mayr, Harald Räcke 143/596

7.3 AVL-Trees

Definition 15
AVL-trees are binary search trees that fulfill the following balance

condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 16
An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 144/596

7.3 AVL-Trees

Definition 15
AVL-trees are binary search trees that fulfill the following balance

condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 16
An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 144/596

Proof.
The upper bound is clear, as a binary tree of height h can only

contain
h−1∑

j=0

2j = 2h − 1

internal nodes.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 145/596

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 146/596

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 146/596

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 146/596

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

fh := 1+minimal size of AVL-tree of height h .

Then

f1 = 2 = F3

f2 = 3 = F4

fh − 1 = 1+ fh−1 − 1+ fh−2 − 1 , hence

fh = fh−1 + fh−2 = Fh+2

7.3 AVL-Trees

Since

F(k) ≈ 1√
5

(
1+√5

2

)k
,

an AVL-tree with n internal nodes has height Θ(logn).

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 148/596

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .
balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,
respectively.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 149/596

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .
balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,
respectively.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 149/596

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 150/596

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e (y
) RightRotate (x)

DoubleRightRotate (x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152/596

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152/596

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152/596

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152/596

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let v denote the parent of the newly inserted node x.

ñ One of the following cases holds:

v

x

bal(v) = −1

v

x a

bal(v) = 0

v

xa

bal(v) = 0

v

x

bal(v) = 1

ñ If bal[v] ≠ 0, Tv has changed height; the balance-constraint

may be violated at ancestors of v.

ñ Call fix-up(parent[v]) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 152/596

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153/596

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153/596

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153/596

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153/596

AVL-trees: Insert

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at the node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not change

its height, and the whole procedure will have been aborted in

the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 153/596

AVL-trees: Insert

Algorithm 11 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 154/596

AVL-trees: Insert

Algorithm 12 DoRotationInsert(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = 1 then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 155/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 156/596

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in a

balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 157/596

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in a

balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 157/596

Case 1: balance[right[v]] = −1

We do a left rotation at v

h− 1

h− 1

h

h− 1 h− 1
h

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158/596

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

h− 1 h− 1
h

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158/596

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

h− 1 h− 1
h

LeftRotate (v)

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158/596

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate (v)

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158/596

Case 1: balance[right[v]] = −1

We do a left rotation at v

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate (v)

Now, Tv has height h+ 1 as before the insertion. Hence, we do

not need to continue.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 158/596

Case 2: balance[right[v]] = 1

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

RightRotate (x)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

RightRotate (x)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

DoubleLeftRotate (v)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate (x)

DoubleLeftRotate (v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160/596

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160/596

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160/596

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160/596

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed— is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call fix-up(v) to restore the balance-condition.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 160/596

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161/596

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161/596

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161/596

AVL-trees: Delete

Invariant at the beginning fix-up(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has either decreased its height by one or it has stayed the

same (note that this is clear right after the deletion but we

have to make sure that it also holds after the rotations done

within Tc in previous iterations).

4. The balance at the node c fulfills balance[c] = {0}. This

holds because if the balance of c is in {−1,1}, then Tc did

not change its height, and the whole procedure will have

been aborted in the previous step.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 161/596

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the

case of a delete there may be a logarithmic number of rotations.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 162/596

AVL-trees: Delete

Algorithm 13 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the

case of a delete there may be a logarithmic number of rotations.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 162/596

AVL-trees: Delete

Algorithm 14 DoRotationDelete(v)
1: if balance[v] = −2 then

2: if balance[right[v]] = −1 then

3: LeftRotate(v);
4: else

5: DoubleLeftRotate(v);
6: else

7: if balance[left[v]] = {0,1} then

8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 163/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

It is clear that the invariant for the fix-up routine holds as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 164/596

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in a

balance of 2 at v.

Before the insertion the height of Tv was h+ 2.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 165/596

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in a

balance of 2 at v.

Before the insertion the height of Tv was h+ 2.

EADS 7.3 AVL-Trees

c© Ernst Mayr, Harald Räcke 165/596

Case 1: balance[left[v]] ∈ {0, 1}

h
h
or
h− 1

h− 1

h

h
or
h− 1

h− 1

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

h

h
or
h− 1

h− 1

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 1: balance[left[v]] ∈ {0, 1}

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate (v)

If the middle subtree has height h the whole tree has height h+ 2

as before the deletion. The iteration stops as the balance at the

root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

Case 2: balance[left[v]] = −1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

DoubleRightRotate (v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate (x)

RightRotate(v)

DoubleRightRotate (v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Definition 17
For b ≥ 2a− 1 an (a, b)-tree is a search tree with the following

properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most b
children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys

(external search tree)

5. there is a special dummy leaf node with key-value ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 168/596

7.4 (a, b)-trees

Each internal node v with d(v) children stores d− 1 keys

k1, . . . , kd − 1. The i-th subtree of v fulfills

ki−1 < key in i-th sub-tree ≤ ki ,

where we use k0 = −∞ and kd = ∞.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 169/596

7.4 (a, b)-trees

Example 18

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 170/596

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171/596

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171/596

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171/596

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171/596

7.4 (a, b)-trees

Variants

ñ The dummy leaf element may not exist; this only makes

implementation more convenient.

ñ Variants in which b = 2a are commonly referred to as

B-trees.

ñ A B-tree usually refers to the variant in which keys and data

are stored at internal nodes.

ñ A B+ tree stores the data only at leaf nodes as in our

definition. Sometimes the leaf nodes are also connected in a

linear list data structure to speed up the computation of

successors and predecessors.

ñ A B∗ tree requires that a node is at least 2/3-full as only

1/2-full (the requirement of a B-tree).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 171/596

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172/596

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172/596

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172/596

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172/596

Lemma 19
Let T be an (a, b)-tree for n > 0 elements (i.e., n+ 1 leaf nodes)

and height h (number of edges from root to a leaf vertex). Then

1. 2ah−1 ≤ n+ 1 ≤ bh
2. logb(n+ 1) ≤ h ≤ loga(

n+1
2)

Proof.

ñ If n > 0 the root has degree at least 2 and all other nodes

have degree at least a. This gives that the number of leaf

nodes is at least 2ah−1.

ñ Analogously, the degree of any node is at most b and, hence,

the number of leaf nodes at most bh.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 172/596

Search

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

Search(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

Search(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

Search(19)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

Search(19)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞19

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Search

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

The search is straightforward. It is only important that you need

to go all the way to the leaf.

Time: O(b · h) = O(b · logn), if the individual nodes are

organized as linear lists.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 173/596

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node v
on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 174/596

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node v
on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 174/596

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node v
on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 174/596

Insert

Insert element x:

ñ Follow the path as if searching for key[x].
ñ If this search ends in leaf `, insert x before this leaf.

ñ For this add key[x] to the key-list of the last internal node v
on the path.

ñ If after the insert v contains b nodes, do Rebalance(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 174/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

Rebalance(v):
ñ Let ki, i = 1, . . . , b denote the keys stored in v.

ñ Let j := b b+1
2 c be the middle element.

ñ Create two nodes v1, and v2. v1 gets all keys k1, . . . , kj−1

and v2 gets keys kj+1, . . . , kb.

ñ Both nodes get at least b b−1
2 c keys, and have therefore

degree at least b b−1
2 c + 1 ≥ a since b ≥ 2a− 1.

ñ They get at most db−1
2 e keys, and have therefore degree at

most db−1
2 e + 1 ≤ b (since b ≥ 2).

ñ The key kj is promoted to the parent of v. The current

pointer to v is altered to point to v1, and a new pointer (to

the right of kj) in the parent is added to point to v2.

ñ Then, re-balance the parent.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 175/596

Insert

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(8)

1 3 5

1 3 5 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(8)

1 3 5 8

1 3 5 8 10

14 28

10 19

14 19 28 ∞8

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(8)

1 3 5 8

1 3 5 8 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(8)

1 3 5 8

1 3 5 8 10

14 28

10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

1

1 3

5 8

5 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(6)

1

1 3

5 8

5 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(6)

1

1 3

5 8

5 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(6)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞6

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(6)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5 6 8

5 6 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞7

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5 6 7 8

5 6 7 8 10

14 28

3 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 6 10 19

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Insert

Insert(7)

1

1 3

5

5 6

7 8

7 8 10

14 28

3 10 19

6

14 19 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 176/596

Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance’(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 177/596

Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance’(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 177/596

Delete

Delete element x (pointer to leaf vertex):

ñ Let v denote the parent of x. If key[x] is contained in v,

remove the key from v, and delete the leaf vertex.

ñ Otherwise delete the key of the predecessor of x from v;

delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it

appears in exactly one internal vertex).

ñ If now the number of keys in v is below a− 1 perform

Rebalance’(v).

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 177/596

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178/596

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178/596

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178/596

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178/596

Delete

Rebalance’(v):
ñ If there is a neighbour of v that has at least a keys take over

the largest (if right neighbor) or smallest (if left neighbour)

and the corresponding sub-tree.

ñ If not: merge v with one of its neighbours.

ñ The merged node contains at most (a− 2)+ (a− 1)+ 1 keys,

and has therefore at most 2a− 1 ≤ b successors.

ñ Then rebalance the parent.

ñ During this process the root may become empty. In this case

the root is deleted and the height of the tree decreases.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 178/596

Delete

1 3 5

1 3 5 10

14

14 19

28

28 ∞

10 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(10)

1 3 5

1 3 5 10

14

14 19

28

28 ∞

10 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(10)

1 3 5

1 3 5 10

14

14 19

28

28 ∞

10 19

10

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(10)

1 3

1 3 5

14

14 19

28

28 ∞

5 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

1 3

1 3 5

14

14 19

28

28 ∞

5 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(14)

1 3

1 3 5

14

14 19

28

28 ∞

5 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(14)

1 3

1 3 5

14

14 19

28

28 ∞

5 19

14

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(14)

1 3

1 3 5 19

28

28 ∞

5 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(14)

1 3

1 3 5 19

28

28 ∞

5 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(14)

1

1 3

5

5 19

28

28 ∞

3 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

1

1 3

5

5 19

28

28 ∞

3 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(3)

1

1 3

5

5 19

28

28 ∞

3 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(3)

1

1 3

5

5 19

28

28 ∞

3 19

3

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(3)

1

5

5 19

28

28 ∞

1 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(3)

1

5

5 19

28

28 ∞

1 19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(3)

1 5

1 5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

1 5

1 5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(1)

1 5

1 5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(1)

1 5

1 5 19

28

28 ∞

19

1

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(1)

5

5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

5

5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5

5 19

28

28 ∞

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5

5 19

28

28 ∞

19

19

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5

28

28 ∞

5

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5

28

28 ∞

5

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5 28

5 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

Delete

Delete(19)

5 28

5 28 ∞

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 179/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

1 3 4 5 8 11 13 17 18 19 20 22 25 27 41 43 47 ∞

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1 3 5 11 13 18 19 22 27 43 47

17

4 8 20 25 41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

1

3 5

11

13

18

19 22 27

43

47

17

4

8

20

25

41

Note that this correspondence is not unique. In particular, there

are different red-black trees that correspond to the same

(2,4)-tree.

EADS 7.4 (a, b)-trees

c© Ernst Mayr, Harald Räcke 180/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

ñ time for search Θ(n)
ñ time for insert Θ(n) (dominated by searching the item)

ñ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(1)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 181/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 182/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)

ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)

ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)
ñ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

ñ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

ñ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

ñ . . .

ñ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 183/596

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr). Choose

r = k+1√n =⇒ time: O(k k+1√n)

Choosing k = Θ(logk) gives a logarithmic running time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 184/596

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr). Choose

r = k+1√n =⇒ time: O(k k+1√n)

Choosing k = Θ(logk) gives a logarithmic running time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 184/596

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr). Choose

r = k+1√n =⇒ time: O(k k+1√n)

Choosing k = Θ(logk) gives a logarithmic running time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 184/596

7.5 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 185/596

7.5 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 185/596

7.5 Skip Lists

How to do insert and delete?

ñ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 185/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

7.5 Skip Lists

Insert:

ñ A search operation gives you the insert position for element

x in every list.

ñ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

ñ Insert x into lists L0, . . . , Lt−1.

Delete:

ñ You get all predecessors via backward pointers.

ñ Delete x in all lists in actually appears in.

The time for both operation is dominated by the search time.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 186/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 187/596

7.5 Skip Lists

Lemma 20
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

This means for any constant α the search takes time O(logn)
with probability at least 1− 1

nα .

Note that the constant in the O-notation may depend on α.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 188/596

7.5 Skip Lists

Lemma 20
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

This means for any constant α the search takes time O(logn)
with probability at least 1− 1

nα .

Note that the constant in the O-notation may depend on α.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 188/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`]

= 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]

≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α

= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

High Probability

Suppose there are a polynomially many events E1, E2, . . . , E`,
` = nc each holding with high probability (e.g. Ei may be the

event that the i-th search in a skip list takes time at most

O(logn)).

Then the probabilityx that all Ei hold is at least

Pr[E1 ∧ · · · ∧ E`] = 1− Pr[Ē1 ∨ · · · ∨ Ē`]
≤ 1−nc ·n−α
= 1−nc−α .

This means Pr[E1 ∧ · · · ∧ E`] holds with high probability.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 189/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26

28

35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26

28

35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

ñ A “long” search path must also go very high.

ñ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 190/596

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 191/596

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 191/596

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 191/596

7.5 Skip Lists

Pr[Ez,k]

≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k)

≤
(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k)

≤
(

2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α

≤
(

2e(β+α)
2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α

≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
(2−β)k ·n−α ≤

(
2e(β+α)

2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 192/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps]

≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the even Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

EADS 7.5 Skip Lists

c© Ernst Mayr, Harald Räcke 193/596

7.6 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the k-th element; return “error” if the

data-structure contains less than k elements.

Augment an existing data-structure instead of developing a

new one.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 194/596

7.6 Augmenting Data Structures

Suppose you want to develop a data structure with:

ñ Insert(x): insert element x.

ñ Search(k): search for element with key k.

ñ Delete(x): delete element referenced by pointer x.

ñ find-by-rank(`): return the k-th element; return “error” if the

data-structure contains less than k elements.

Augment an existing data-structure instead of developing a

new one.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 194/596

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 195/596

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 195/596

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 195/596

7.6 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to
be stored (Step 2), and later realize that
either the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 195/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 196/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 196/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 196/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root, k) with

Algorithm 15 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 197/596

Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(25 , 14)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(13 , 14)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(21 , 5)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(16 , 5)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(19 , 3)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

Select(x, i)

Select(20 , 1)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

Find-by-rank:

ñ decide whether you have to proceed into the left or right

sub-tree
ñ adjust the rank that you are searching for if you go right

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 198/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199/596

7.6 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 199/596

Rotations

The only operation during the fix-up procedure that alters the tree

and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.

EADS 7.6 Augmenting Data Structures

c© Ernst Mayr, Harald Räcke 200/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Dictionary:

ñ S.insert(x): Insert an element x.

ñ S.delete(x): Delete the element pointed to by x.

ñ S.search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 201/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Definitions:

ñ Universe U of keys, e.g., U ⊆ N0. U very large.

ñ Set S ⊆ U of keys, |S| =m ≤ n.

ñ Array T[0, . . . , n− 1] hash-table.

ñ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

ñ Fast to evaluate.

ñ Small storage requirement.

ñ Good distribution of elements over the whole table.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 202/596

7.7 Hashing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

x

�

k6

k3

�

�

k7

�

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 203/596

7.7 Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

Such a hash function h is called a perfect hash function for set S.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 204/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 205/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already once |S| ≥ω(√n).
Lemma 21
The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2 ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 206/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n]

=
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n

= e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n

= e−m(m−1)
2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

7.7 Hashing

Proof.
Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

`=1

n− ` + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the `-th element that is

hashed has a probability of n−`+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 207/596

x

f(x)

f(x) = e−x

g(x) = 1− x

The inequality 1− x ≤ e−x is derived by stopping the

tayler-expansion of e−x after the second term.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 208/596

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

ñ open addressing, aka. closed hashing

ñ hashing with chaining. aka. closed addressing, open

hashing.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 209/596

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

ñ Access: compute h(x) and search list for key[x].
ñ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

x

�

�

�

�

k1 k4 �

k5 k2 k7 �

k3 �

k8 k6 �

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 210/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

7.7 Hashing

Let A denote a strategy for resolving collisions. We use the

following notation:

ñ A+ denotes the average time for a successful search when

using A;

ñ A− denotes the average time for an unsuccessful search

when using A;

ñ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 211/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined.

The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

Note that this result does not depend on the hash-function that is

used.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 212/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]keys before ki

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k` denote the `-th key inserted into the table.

Let for two keys ki and kj, Xij denote the event that i and j hash

to the same position. Clearly, Pr[Xij = 1] = 1/n for uniform

hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

cost for key ki

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 213/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 214/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1) form

a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 215/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Open Addressing

Choices for h(k, j):
ñ h(k, i) = h(k)+ i mod n. Linear probing.

ñ h(k, i) = h(k)+ c1i+ c2i2 mod n. Quadratic probing.

ñ h(k, i) = h1(k)+ ih2(k) mod n. Double hashing.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n; for quadratic

probing c1 and c2 have to be chosen carefully).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 216/596

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 217/596

Linear Probing

ñ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

ñ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 22
Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 217/596

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 23
Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 218/596

Quadratic Probing

ñ Not as cache-efficient as Linear Probing.

ñ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 23
Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 218/596

Double Hashing

ñ Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 219/596

Double Hashing

ñ Any probe into the hash-table usually creates a cash-miss.

Lemma 24
Let A be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 219/596

7.7 Hashing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 220/596

7.7 Hashing

L−

D− L+
D+

α

#probes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 221/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i]

= m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1

= αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai1]
= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·

. . . · Pr[Ai1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 222/596

Analysis of Idealized Open Address Hashing

E[X]

=
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i]

≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1

=
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi

= 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 223/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 1

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 2

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 3

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 4

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 1

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 2

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 3

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i = 4

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

i

Pr[X = i]

1 2 3 4 5 6 7

∑
i iPr[X = i] =

∑
i Pr[X ≥ i]

iPr[X = i] Pr[X ≥ i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 224/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i

= n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i

= 1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx

= 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m

= 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number

of probes made in an unsuccessful search for k at the time that k
is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 225/596

x

f(x)

f(x) = 1
x

m−n m−n+ 1 n

1
m−n+1

1
m−n+2 · · · 1

n

n∑

k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 226/596

7.7 Hashing

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 227/596

7.7 Hashing

How do we delete in a hash-table?

ñ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

ñ For open addressing this is difficult.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 227/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 228/596

7.7 Hashing

Definition 25
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that Pr[h(u1) = h(u2)] = 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 229/596

7.7 Hashing

Definition 25
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that Pr[h(u1) = h(u2)] = 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 229/596

7.7 Hashing

Definition 26
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

Note that the probability is w. r. t. the choice of a random

hash-function from set H .

This requirement clearly implies a universal hash-function.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 230/596

7.7 Hashing

Definition 26
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

ñ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

ñ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

Note that the probability is w. r. t. the choice of a random

hash-function from set H .

This requirement clearly implies a universal hash-function.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 230/596

7.7 Hashing

Definition 27
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ` ≤ k
distinct keys u1, . . . , u` ∈ U , and for any set of ` not necessarily

distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
1

n`
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 231/596

7.7 Hashing

Definition 28
A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

` ≤ k distinct keys u1, . . . , u` ∈ U , and for any set of ` not

necessarily distinct hash-positions t1, . . . , t`:

Pr[h(u1) = t1 ∧ · · · ∧ h(u`) = t`] ≤
(µ
n
)` ,

where the probability is w. r. t. the choice of a random

hash-function from set H .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 232/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p)mod n

Lemma 29
The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 233/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

7.7 Hashing

Proof.
Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

ñ ax + b 6≡ ay + b (mod p)

If x ≠ y then (x −y) 6≡ 0 (mod p).

Multiplying with a 6≡ 0 (mod p) gives

a(x −y) 6≡ 0 (mod p)

where we use that Zp is a field (KÃČÂűrper) and, hence, has

no zero divisors (nullteilerfrei).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 234/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

ñ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to different hash-values tx := ha,b(x) and

ty := ha,b(y).

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ay − ty (mod p)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 235/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the (modn)-
operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the (modn) operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most dp/ne values.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 236/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 237/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤

Prtx≠ty∈Z2
p

[tx mod n=h1

∧
ty mod n=h2

]

≤
⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

7.7 Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[tx mod n=h1

∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between b pnc and dpne.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 238/596

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

x

�

k6

k3

�

�

k7

�

k1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 239/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 240/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 241/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]

= E
[

2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

The total memory that is required by all hash-tables is
∑
jm2

j .

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level.

= 2

(
m
2

)
1
m
+m = 2m− 1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 242/596

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m).

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket.

We only need that the hash-function is universal!!!

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 243/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Goal:

Try to generate a perfect hash-table (constant worst-case search

time) in a dynamic scenario.

ñ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

ñ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
ñ A search clearly takes constant time if the above constraint is

met.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 244/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

x7

x6

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Insert:

x

�

�

x1

x4

�

�

x7

�

�

x

�

x3

�

x6

�

�

x9

�

�

T1 T2

x x

x7

x6

x7

x6

x1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 245/596

Cuckoo Hashing

Algorithm 16 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps← 1
3: while steps ≤maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: rehash() // change table-size and rehash everything
9: Cuckoo-Insert(x)

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 246/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches ` different keys (apart from x)?

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 247/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6
a7

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a2
a3

a4
a5

a6
a7

a8

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a1

a3
a4

a5
a6

a7

a8

a2

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x
a3

a4
a5

a6
a7

a8

a2

a1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

b1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

Insert:

x x

T1 T2

x

a3
a4

a5
a6

a7

a8

a2

a1

x

b1
b2

b3

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 248/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

A cycle-structure is defined by

ñ `a keys a1, a2, . . . a`a , `a ≥ 2,

ñ An index ja ∈ {1 . . . , `a − 1} that defines how much the last

item a`a “jumps back” in the sequence.

ñ `b keys b1, b2, . . . b`b . b ≥ 0.

ñ An index jb ∈ {1 . . . , `a + `b} that defines how much the last

item b`b “jumps back” in the sequence.

ñ An assignment of positions for the keys in both tables.

Formally we have positions p1, . . . , p`a , and p′1, . . . , p
′
`b

.

ñ The size of a cycle-structure is defined as `a + `b.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 249/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

We say a cycle-structure is active for key x if the hash-functions

are chosen in such a way that the hash-function results match the

pre-defined key-positions.

ñ h1(x) = h1(a1) = p1

ñ h2(a1) = h2(a2) = p2

ñ h1(a2) = h1(a3) = p3

ñ . . .
ñ if `a is even then h1(a`) = psa , otw. h2(a`) = psa
ñ h2(x) = h2(b1) = p′1
ñ h1(b1) = h1(b2) = p′2
ñ . . .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 250/596

Cuckoo Hashing

Observation If we end up in an infinite loop there must exist a

cycle-structure that is active for x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 251/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key x depends on the

hash-functions.

Lemma 30
A given cycle-structure of size s is active for key x with

probability at most (
µ
n

)2(s+1)
,

if we use (µ, s + 1)-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 252/596

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for

the probability of mapping s + 1 keys (the a-keys, the b-keys and

x) to pre-specified positions in T1, and to pre-specified positions

in T2.

The probability is (µ
n

)s+1 ·
(µ
n

)s+1
,

since h1 and h2 are chosen independently.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 253/596

Cuckoo Hashing

Proof.
All positions are fixed by the cycle-structure. Therefore we ask for

the probability of mapping s + 1 keys (the a-keys, the b-keys and

x) to pre-specified positions in T1, and to pre-specified positions

in T2.

The probability is (µ
n

)s+1 ·
(µ
n

)s+1
,

since h1 and h2 are chosen independently.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 253/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

The number of cycle-structures of size s is small:

ñ There are at most s ways to choose `a. This fixes `b.

ñ There are at most s2 ways to choose ja, and jb.

ñ There are at most ms possibilities to choose the keys

a1, . . . , a`a and b1, . . . , b`b .
ñ There are at most ns choices for choosing the positions

p1, . . . , p`a and p′1, . . . , p
′
`a .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 254/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1)

= s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

Hence, there are at most s3(mn)2 cycle-structures of size s.

The probability that there is an active cycle-structure of size s is

at most

s3(mn)s ·
(µ
n

)2(s+1) = s3

mn

(
mn

)s+1(µ2

n2

)s+1

= s3

mn

(µ2m
n

)s+1

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 255/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Cuckoo Hashing

If we make sure that n ≥ (1+ δ)µ2m for a constant δ (i.e., the

hash-table is not too full) we obtain

Pr[there exists an active cycle-structure]

≤
∞∑

s=2

Pr[there exists an act. cycle-structure of size s]

≤
∞∑

s=2

s3

mn

(µ2m
n

)s+1

≤ 1
mn

∞∑

s=0

s3
(1

1+ δ
)s

≤ 1
m2 · O(1) .

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 256/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Now assume that the insert operation takes t steps and does not

create an infinite loop.

Consider the sequences x,a1, a2, . . . , a`a and x,b1, b2, . . . , b`b
where the ai’s and bi’s are defined as before (but for the

construction we only use keys examined during the while loop)

If the insert operation takes t steps then

t ≤ 2`a + 2`b + 2

as no key is examined more than twice.

Hence, one of the sequences x,a1, a2, . . . , a`a and

x,b1, b2, . . . , b`b must contain at least t/4 keys (either `a + 1 or

`b + 1 must be larger than t/4).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 257/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Define a sub-sequence of length ` starting with x, as a sequence

x1, . . . , x` of keys with x1 = x, together with ` + 1 positions

p0, p1, . . . , p` from {0, . . . , n− 1}.

We say a sub-sequence is right-active for h1 and h2 if

h1(x) = h1(x1) = p0, h2(x1) = h2(x2) = p1,

h1(x2) = h1(x3) = p2, h2(x3) = h2(x4) = p3,

We say a sub-sequence is left-active for h1 and h2 if h2(x1) = p0,

h1(x1) = h1(x2) = p1, h2(x2) = h2(x3) = p2,

h1(x3) = h1(x4) = p3,

For an active sequence starting with x the key x is supposed to have a

collision with the second element in the sequence. This collision could either

be in the table T1 (left) or in the table T2 (right). Therefore the above

definitions differentiate between left-active and right-active.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 258/596

Cuckoo Hashing

Observation:

If the insert takes t ≥ 4` steps there must either be a left-active or

a right-active sub-sequence of length ` starting with x.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 259/596

Cuckoo Hashing

The probability that a given sub-sequence is left-active

(right-active) is at most (µ
n

)2`
,

if we use (µ, `)-independent hash-functions. This holds since

there are ` keys whose hash-values (two values per key) have to

map to pre-specified positions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 260/596

Cuckoo Hashing

The number of sequences is at most m`−1p`+1 as we can choose

` − 1 keys (apart from x) and we can choose ` + 1 positions

p0, . . . , p`.

The probability that there exists a left-active or right-active

sequence of length ` is at most

Pr[there exists active sequ. of length `]

≤ 2 ·m`−1 ·n`+1 ·
(µ
n

)2`

≤ 2
(1

1+ δ
)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 261/596

Cuckoo Hashing

If the search does not run into an infinite loop the probability that

it takes more than 4` steps is at most

2
(1

1+ δ
)`

We choose maxsteps = 4(1+ 2 logm)/ log(1+ δ). Then the

probability of terminating the while-loop because of reaching

maxsteps is only O(1
m2) (O(1/m2) because of reaching an

infinite loop and 1/m2 because the search takes maxsteps steps

without running into a loop).

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 262/596

Cuckoo Hashing

The expected time for an insert under the condition that

maxsteps is not reached is

∑

`≥0

Pr[search takes at least ` steps | iteration successful]

≤
∑

`≥0

8
(1

1+ δ
)` = O(1) .

More generally, the above expression gives a bound on the cost in

the successful iteration of an insert-operation (there is exactly one

successful iteration).

An iteration that is not successful induces cost O(m) for doing a

complete rehash.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 263/596

Cuckoo Hashing

The expected number of unsuccessful operations is O(1
m2).

Hence, the expected cost in unsuccessful iterations is only O(1
m).

Hence, the total expected cost for an insert-operation is constant.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 264/596

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) it is sufficient to have

(µ,Θ(logm))-independent hash-functions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 265/596

Cuckoo Hashing

How do we make sure that n ≥ µ2(1 + δ)m?

ñ Let α := 1/(µ2(1+ δ)).
ñ Keep track of the number of elements in the table. Whenever

m ≥ αn we double n and do a complete re-hash

(table-expand).

ñ Whenever m drops below α
4n we divide n by 2 and do a

rehash (table-shrink).

ñ Note that right after a change in table-size we have m = α
2n.

In order for a table-expand to occur at least α2n insertions

are required. Similar, for a table-shrink at least α4 deletions

must occur.

ñ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 266/596

Definition 31
Let d ∈ N; q ≥ n be a prime; and let ~a ∈ {0, . . . , q − 1}d+1. Define

for x ∈ {0, . . . , q}

h~a(x) :=
(d∑

i=0

aixi mod q
)

mod n .

Let Hd
n := {h~a | ~a ∈ {0, . . . , q}d+1}. The class H d

n is

(2, d+ 1)-independent.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 267/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 268/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Fix ` ≤ d+ 1; let x1, . . . , x` ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , t` denote the corresponding hash-function values.

Let A` = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , `}}
Then

hā ∈ A`ahā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , d qne − 1}}

Therefore I have

|B1| · . . . · |B`| · qd−`+1 ≤ dq
n
e` · qd−`+1

possibilities to choose ā such that hā ∈ A`.

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 269/596

Therefore the probability of choosing hā from A` is only

d qne` · qd−`+1

qd+1 ≤
(2
n

)`

EADS 7.7 Hashing

c© Ernst Mayr, Harald Räcke 270/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

ñ S.build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

ñ S.insert(x): Adds element x to the data-structure.

ñ Element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
ñ S.delete-min(): Deletes the element with minimum

key-value from S and returns it.

ñ Boolean S.empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

ñ S.merge(S′): S := S ∪ S′; S′ := �.
EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 271/596

8 Priority Queues

An addressable Priority Queue also supports:

ñ Handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 272/596

8 Priority Queues

An addressable Priority Queue also supports:

ñ Handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 272/596

8 Priority Queues

An addressable Priority Queue also supports:

ñ Handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 272/596

8 Priority Queues

An addressable Priority Queue also supports:

ñ Handle S.insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

ñ S.delete(h): Deletes element specified through handle h.

ñ S.decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 272/596

Dijkstra’s Shortest Path Algorithm

Algorithm 17 Shortest-Path(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue

4: for all v ∈ V \ {s} do

5: v.key←∞;

6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.empty() = false do

9: v ← S.delete-min();
10: for all x ∈ V s.t. (v,x) ∈ E do

11: if x.key > v.key+d(v,x) then

12: S.decrease-key(hx,v.key+d(v,x));
13: x.key← v.key+d(v,x);

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 273/596

Prim’s Minimum Spanning Tree Algorithm

Algorithm 18 Prim-MST(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. {v,x} ∈ E do
11: if x.key > d(v,x) then
12: S.decrease-key(hx,d(v,x));
13: x.key← d(v,x);
14: x.pred← v;

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 274/596

Analysis of Dijkstra and Prim

Both algorithms require:

ñ 1 build() operation

ñ |V | insert() operations

ñ |V | delete-min() operations

ñ |V | is-empty() operations

ñ |E| decrease-key() operations

How good a running time can we obtain?

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 275/596

Analysis of Dijkstra and Prim

Both algorithms require:

ñ 1 build() operation

ñ |V | insert() operations

ñ |V | delete-min() operations

ñ |V | is-empty() operations

ñ |E| decrease-key() operations

How good a running time can we obtain?

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 275/596

8 Priority Queues

Operation Binary Heap BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

The standard version of binary heaps is not addressable, and

hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 276/596

8 Priority Queues

Operation Binary Heap BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

The standard version of binary heaps is not addressable, and

hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 276/596

8 Priority Queues

Operation Binary Heap BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

The standard version of binary heaps is not addressable, and

hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 276/596

8 Priority Queues

Operation Binary Heap BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

The standard version of binary heaps is not addressable, and

hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 276/596

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time

O((|V | + |E|) log |V |).

Using Fibonacci Heaps, Prim and Dijkstra run in time

O(|V | log |V | + |E|).

EADS 8 Priority Queues

c© Ernst Mayr, Harald Räcke 277/596

8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full, and

this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of one

of its children.

7

159

19311117

13 1225 43 80

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 278/596

8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full, and

this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of one

of its children.

7

159

19311117

13 1225 43 80

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 278/596

8.1 Binary Heaps

ñ Nearly complete binary tree; only the last level is not full, and

this one is filled from left to right.

ñ Heap property: A node’s key is not larger than the key of one

of its children.

7

159

19311117

13 1225 43 80

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 278/596

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 279/596

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 279/596

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 279/596

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 280/596

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 280/596

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 280/596

8.1 Binary Heaps
Maintain a pointer to the last element x.

ñ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 280/596

8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 281/596

8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 281/596

8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 281/596

8.1 Binary Heaps
Maintain a pointer to the last element x.
ñ We can compute the successor of x

(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 281/596

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

159

19311117

13 1225 43 80 x1

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 282/596

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

159

19311117

13 1225 43 80 1 x14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 282/596

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

159

19

31

1117

13 1225 43 80 1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 282/596

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

15

9

19

31

1117

13 1225 43 80 1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 282/596

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

15

9

19

31

1117

13 1225 43 80 1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 282/596

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

916

19121718

27 2025 43 13 x1 e

At its new position e may either travel up or down in the tree (but

not both directions).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 283/596

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

916

19121718

27 2025 43 13 x1 e

At its new position e may either travel up or down in the tree (but

not both directions).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 283/596

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

916

19121718

27 2025 43 1 x

13e

At its new position e may either travel up or down in the tree (but

not both directions).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 283/596

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

9

16 191218

27 2025 43 1 x

13e

At its new position e may either travel up or down in the tree (but

not both directions).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 283/596

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

9

16 191218

27 2025 43 1 x

13e

At its new position e may either travel up or down in the tree (but

not both directions).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 283/596

Binary Heaps

Operations:

ñ minimum(): return the root-element. Time O(1).
ñ is-empty(): check whether root-pointer is null. Time O(1).
ñ insert(k): insert at x and bubble up. Time O(logn).
ñ delete(h): swap with x and bubble up or sift-down. Time

O(logn).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 284/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18 17

16 15 14 13 11 12 10 9 5 7 6 8 4 2 3 35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18 17

16 15 14 13 11 12 10 9 5 7 6 8 4 2 3 35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18

1716 15 14 13 11 12 10 9 5 7 6 8 4 2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18

1716 15 14 13 11 12 10 9 5 7 6 8 4 2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19

18 1716 15 14 13 11 12 10 9 5 7 6 8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19

18 1716 15 14 13 11 12 10 9 5 7 6 8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20

19 18 1716 15 14 13 11 12 10 9 5 7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20

19 18 1716 15 14 13 11 12 10 9 5 7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21

20 19 18 1716 15 14 13 11 12 10 9

5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21

20 19 18 1716 15 14 13 11 12 10 9

5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22

21 20 19 18 1716 15 14 13 11 12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22

21 20 19 18 1716 15 14 13 11 12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23

22 21 20 19 18 1716 15 14 13

11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23

22 21 20 19 18 1716 15 14 13

11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24

23 22 21 20 19 18 1716 15 14

13 11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24

23 22 21 20 19 18 1716 15 14

13 11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 25

24 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7

6

8 4

2 3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26

25

24 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7

6

8 4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26

2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7

6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26

2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7

6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27

26

2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9

5

7

6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27

26 2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9

5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27

26 2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9

5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28

27

26 2524 23 22 21 20 19 18 1716

15

14

13 11

12 10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28

27 26 2524 23 22 21 20 19 18 1716

15

14

13 11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28

27 26 2524 23 22 21 20 19 18 1716

15

14

13 11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28

27 26 2524 23 22 21 20 19 18 1716

15

14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 2524 23 22 21 20 19 18 1716

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30 29

28 27 26 2524 23 22 21 20 19 18 1716

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30

29

28 27 26 2524 23 22 21 20 19 18 1716

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30

29

28 27 26 2524 23 22 21 20 19 18 1716

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30

2928 27 26 2524 23 22 21 20 19 18

17

16

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30

2928 27 26 2524 23 22 21 20 19 18

17

16

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Build Heap

We can build a heap in linear time:

31

30

2928 27 26 2524 23 22 21 20 19 18

17

16

15 14

13

11

12

10

9 5

7 6

8

4

2

3

35

∑

levels `

2` · (h− `) = O(2h) = O(n)

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 285/596

Binary Heaps

Operations:

ñ minimum(): Return the root-element. Time O(1).
ñ is-empty(): Check whether root-pointer is null. Time O(1).
ñ insert(k): Insert at x and bubble up. Time O(logn).
ñ delete(h): Swap with x and bubble up or sift-down. Time

O(logn).
ñ build(x1, . . . , xn): Insert elements arbitrarily; then do

sift-down operations starting with the lowest layer in the tree.

Time O(n).

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 286/596

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain there positions and therefore there are not stable

handles.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 287/596

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain there positions and therefore there are not stable

handles.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 287/596

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain there positions and therefore there are not stable

handles.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 287/596

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

ñ The parent of i-th element is at position b i−1
2 c.

ñ The left child of i-th element is at position 2i+ 1.

ñ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain there positions and therefore there are not stable

handles.

EADS 8.1 Binary Heaps

c© Ernst Mayr, Harald Räcke 287/596

8.2 Binomial Heaps

Operation Binary Heap BST
Binomial

Heap
Fibonacci

Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 288/596

Binomial Trees

B0 B1 B2 B3 B4

Bt−1

Bt−1

Bt

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 289/596

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 290/596

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 290/596

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 290/596

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 290/596

Binomial Trees

Properties of Binomial Trees

ñ Bk has 2k nodes.

ñ Bk has height k.

ñ The root of Bk has degree k.

ñ Bk has
(
k
`

)
nodes on level `.

ñ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 290/596

Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, and B1.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 291/596

Binomial Trees

Bk−1

Bk−1

Bk

(
k−1
`

)

(
k−1
`−1

)

The number of nodes on level ` in tree Bk is therefore

(
k− 1
` − 1

)
+
(
k− 1
`

)
=
(
k
`

)

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 292/596

Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 293/596

Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 293/596

Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 293/596

Binomial Trees

0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bn, . . . , b1, b0 is obtained by

setting the least significant 1-bit to 0.

The `-th level contains nodes that have ` 1’s in their label.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 293/596

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have children then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 294/596

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have children then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 294/596

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have children then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 294/596

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have children then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 294/596

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 295/596

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 295/596

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 295/596

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 295/596

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the dual

representation of n.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 296/596

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the dual

representation of n.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 296/596

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the dual

representation of n.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 296/596

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the dual

representation of n.

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 296/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap

Properties of a heap with n keys:

ñ Let n = bdbd−1, . . . , b0 denote the dual representation of n.
ñ The heap contains tree Bi iff bi = 1.
ñ Hence, at most blognc + 1 trees.
ñ The minimum must be contained in one of the roots.
ñ The height of the largest tree is at most blognc.
ñ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 297/596

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 298/596

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 298/596

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 298/596

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 298/596

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

0

19

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 300/596

8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 300/596

8.2 Binomial Heaps

S1.merge(S2):
ñ Analogous to binary addition.

ñ Time is proportional to the number of trees in both heaps.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 300/596

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 301/596

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 301/596

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
ñ Create a new heap S′ that contains just the element x.

ñ Execute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 301/596

8.2 Binomial Heaps

S.minimum():
ñ Find the minimum key-value among all roots.

ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 302/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.delete-min():
ñ Find the minimum key-value among all roots.

ñ Remove the corresponding tree Tmin from the heap.

ñ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

ñ Compute S.merge(S′).
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 303/596

8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 304/596

8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 304/596

8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 304/596

8.2 Binomial Heaps

S.decrease-key(handle h):
ñ Decrease the key of the element pointed to by h.

ñ Bubble the element up in the tree until the heap property is

fulfilled.

ñ Time: O(logn) since the trees have height O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 304/596

8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 305/596

8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 305/596

8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 305/596

8.2 Binomial Heaps

S.delete(handle h):
ñ Execute S.decrease-key(h,−∞).
ñ Execute S.delete-min().
ñ Time: O(logn).

EADS 8.2 Binomial Heaps

c© Ernst Mayr, Harald Räcke 305/596

Amortized Analysis

Definition 32
A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with an

empty data-structre) that operate on at most n elements, and let

ki denote the number of occurences of opi() within this sequence.

Then the actual running time must be at most
∑
i kiti(n).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 306/596

Amortized Analysis

Definition 32
A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with an

empty data-structre) that operate on at most n elements, and let

ki denote the number of occurences of opi() within this sequence.

Then the actual running time must be at most
∑
i kiti(n).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 306/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Potential Method

Introduce a potential for the data structure.

ñ Φ(Di) is the potential after the i-th operation.

ñ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

ñ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i+1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 307/596

Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the stack

currently contains less than k items it empties the stack.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k}.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 308/596

Example: Stack

Stack

ñ S. push()
ñ S. pop()
ñ S.multipop(k): removes k items from the stack. If the stack

currently contains less than k items it empties the stack.

Actual cost:

ñ S. push(): cost 1.

ñ S. pop(): cost 1.

ñ S.multipop(k): cost min{size, k}.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 308/596

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 309/596

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 309/596

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 309/596

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:

ñ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

ñ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

ñ S.multipop(k): cost

Ĉmp = Cmp +∆Φ =min{size, k} −min{size, k} ≤ 0 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 309/596

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 310/596

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 310/596

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

ñ Changing bit from 0 to 1: cost 1.

ñ Changing bit from 1 to 0: cost 1.

ñ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 310/596

Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 311/596

Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 311/596

Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 311/596

Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 311/596

Example: Binary Counter

Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

ñ Changing bit from 0 to 1: cost

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

ñ Changing bit from 1 to 0: cost 0.

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

ñ Increment. Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1→ 0)-operations, and one (0→ 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 311/596

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 312/596

8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 313/596

8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 313/596

8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 313/596

8.3 Fibonacci Heaps

How do we implement trees with non-constant degree?

ñ The children of a node are arranged in a circular linked list.

ñ A child-pointer points to an arbitrary node within the list.

ñ A parent-pointer points to the parent node.

ñ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 313/596

8.3 Fibonacci Heaps

ñ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

ñ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 314/596

8.3 Fibonacci Heaps

Additional implementation details:

ñ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

ñ Every node stores a boolean value x.marked that specifies

whether x is marked or not.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 315/596

8.3 Fibonacci Heaps

The potential function:

ñ t(S) denotes the number of trees in the heap.

ñ m(S) denotes the number of marked nodes.

ñ We use the potential function Φ(S) = t(S)+ 2m(S).

7 24

4626

35

23 17

30

3

5241

44

18

39

min

The potential is Φ(S) = 5+ 2 · 3 = 11.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 316/596

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 317/596

8.3 Fibonacci Heaps

S.minimum()

ñ Access through the min-pointer.

ñ Actual cost O(1).
ñ No change in potential.

ñ Amortized cost O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 318/596

8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 319/596

8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min

min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).

ñ No change in potential.

ñ Hence, amortized cost is O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 319/596

8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min

min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 319/596

8.3 Fibonacci Heaps

S.merge(S′)
ñ Merge the root lists.

ñ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min

min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

ñ Actual cost O(1).
ñ No change in potential.

ñ Hence, amortized cost is O(1).
EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 319/596

8.3 Fibonacci Heaps
x is inserted next to the min-pointer as
this is our entry point into the root-list.

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 320/596

8.3 Fibonacci Heaps
x is inserted next to the min-pointer as
this is our entry point into the root-list.

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 320/596

8.3 Fibonacci Heaps
x is inserted next to the min-pointer as
this is our entry point into the root-list.

S. insert(x)
ñ Create a new tree containing x.
ñ Insert x into the root-list.
ñ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
ñ Actual cost O(1).
ñ Change in potential is +1.
ñ Amortized cost is c +O(1) = O(1).
EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 320/596

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)

ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 321/596

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).

ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 321/596

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 321/596

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 321/596

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
ñ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
ñ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

ñ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 321/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23

17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23

17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxxx x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains
for every degree value d a pointer to a tree left of the current pointer whose root
has degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23

17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxxx x

current

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 322/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c

≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1)

≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.Actual cost for delete-min()

ñ At most Dn + t elements in root-list before consolidate.

ñ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
ñ t′ ≤ Dn + 1 as degrees are different after consolidating.

ñ Therefore ∆Φ ≤ Dn + 1− t;
ñ We can pay c · (t −Dn − 1) from the potential decrease.

ñ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 323/596

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 324/596

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 324/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

ñ Just decrease the key-value of element referenced by h.

Nothing else to do.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

ñ Decrease key-value of element x reference by h.

ñ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Mark the (previous) parent of x.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Continue cutting the parent until you arrive at an unmarked

node.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 325/596

Fibonacci Heaps: decrease-key(handle h, v)

Marking a node can be viewed as a
first step towards becoming a root.
The first time x loses a child it is
marked; the second time it loses a
child it is made into a root.

Case 3: heap-property is violated, and parent is marked

ñ Decrease key-value of element x reference by h.

ñ Cut the parent edge of x, and make x into a root.

ñ Adjust min-pointers, if necessary.

ñ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 326/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

ñ Constant cost for decreasing the value.

ñ Constant cost for each of ` cuts.

ñ Hence, cost is at most c2 · (` + 1), for some constant c2.

Amortized cost:

ñ t′ = t + `, as every cut creates one new root.

ñ m′ ≤m− (` − 1)+ 1 =m− ` + 2, since all but the first cut

marks a node; the last cut may mark a node.

ñ ∆Φ ≤ ` + 2(−` + 2) = 4− `
ñ Amortized cost is at most

c2(` + 1)+ c(4− `) ≤ (c2 − c)` + 4c = O(1) ,

if c ≥ c2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 327/596

Delete node

H. delete(x):
ñ decrease value of x to −∞.

ñ delete-min.

Amortized cost: O(D(n))
ñ O(1) for decrease-key.

ñ O(D(n)) for delete-min.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 328/596

8.3 Fibonacci Heaps

Lemma 33
Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥



0 if i = 1

i− 2 if i ≥ 1

The marking process is very important for the proof of
this lemma. It ensures that a node can have lost at most
one child since the last time it became a non-root node.
When losing a first child the node gets marked; when
losing the second child it is cut from the parent and
made into a root.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 329/596

8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 330/596

8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 330/596

8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 330/596

8.3 Fibonacci Heaps

Proof

ñ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

ñ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

ñ Since, then yi has lost at most one child.

ñ Therefore, degree(yi) ≥ i− 2.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 330/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k

ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

ñ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

ñ sk monotonically increases with k
ñ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 331/596

8.3 Fibonacci Heaps

Definition 34
Consider the following non-standard Fibonacci type sequence:

Fk =




1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+∑k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.

EADS 8.3 Fibonacci Heaps

c© Ernst Mayr, Harald Räcke 332/596

9 van Emde Boas Trees

Dynamic Set Data Structure S:

ñ S. insert(x)
ñ S.delete(x)
ñ S. search(x)
ñ S.min()
ñ S.max()
ñ S. succ(x)
ñ S.pred(x)

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 333/596

9 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

ñ S. insert(x): Inserts x into S.

ñ S. delete(x): Deletes x from S. Usually assumes that x ∈ S.

ñ S.member(x): Returns 1 if x ∈ S and 0 otw.

ñ S.min(): Returns the value of the minimum element in S.

ñ S.max(): Returns the value of the maximum element in S.

ñ S. succ(x): Returns successor of x in S. Returns null if x is

maximum or larger than any element in S. Note that x needs

not to be in S.

ñ S. pred(x): Returns the predecessor of x in S. Returns null

if x is minimum or smaller than any element in S. Note that

x needs not to be in S.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 334/596

9 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a

restricted set?

In the following we assume that the keys are from

{0,1, . . . , u− 1}, where u denotes the size of the universe.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 335/596

Implementation 1: Array

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

u

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic

set.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 336/596

Implementation 1: Array

Algorithm 19 array.insert(x)
1: content[x]← 1;

Algorithm 20 array.delete(x)
1: content[x]← 0;

Algorithm 21 array.member(x)
1: return content[x];

ñ Note that we assume that x is valid, i.e., it falls within the

array boundaries.

ñ Obviously(?) the running time is constant.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 337/596

Implementation 1: Array

Algorithm 22 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 23 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 338/596

Implementation 1: Array

Algorithm 22 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 23 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 338/596

Implementation 1: Array

Algorithm 22 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 23 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 338/596

Implementation 1: Array

Algorithm 24 array.succ(x)
1: for (i = x + 1; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.pred(x)
1: for (i = x − 1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

ñ Running time is O(u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 339/596

Implementation 2: Summary Array

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

√
u

√
u

√
u

√
u

√
u

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

ñ
√
u cluster-arrays of

√
u bits.

ñ One summary-array of
√
u bits. The i-th bit in the summary

array stores the bit-wise or of the bits in the i-th cluster.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 340/596

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 341/596

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 341/596

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 341/596

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 341/596

Implementation 2: Summary Array

Algorithm 26 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 27 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 342/596

Implementation 2: Summary Array

Algorithm 26 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 27 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 342/596

Implementation 2: Summary Array

Algorithm 26 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 27 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ The running times are constant, because the corresponding

array-functions have constant running times.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 342/596

Implementation 2: Summary Array

Algorithm 28 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation, which will turn out to be O(√u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 343/596

Implementation 2: Summary Array

Algorithm 28 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ The running time is dominated by the cost of a minimum

computation, which will turn out to be O(√u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 343/596

Implementation 2: Summary Array

Algorithm 29 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 30 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 344/596

Implementation 2: Summary Array

Algorithm 29 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 30 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 344/596

Implementation 2: Summary Array

Algorithm 29 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 30 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Running time is roughly 2
√
u = O(u) in the worst case.

The operator ◦ stands
for the concatenation
of two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 344/596

Implementation 2: Summary Array

Algorithm 31 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 345/596

Implementation 2: Summary Array

Algorithm 31 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 345/596

Implementation 2: Summary Array

Algorithm 32 pred(x)
1: m ← cluster[high(x)].pred(low(x))
2: if m ≠ null then return high(x) ◦m;

3: predcluster ← summary .pred(high(x));
4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();
6: return predcluster ◦ offs;

7: return null;

ñ Running time is roughly 3
√
u = O(√u) in the worst case.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 346/596

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 347/596

Implementation 3: Recursion

We assume that u = 22k for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the

recursion).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 348/596

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 349/596

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 349/596

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 349/596

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 349/596

Implementation 3: Recursion

Algorithm 33 member(x)
1: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 350/596

Implementation 3: Recursion

Algorithm 34 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

ñ Tins(u) = 2Tins(
√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 351/596

Implementation 3: Recursion

Algorithm 35 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

ñ Tdel(u) = 2Tdel(
√
u)+ Tmin(

√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 352/596

Implementation 3: Recursion

Algorithm 36 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

ñ Tmin(u) = 2Tmin(
√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 353/596

Implementation 3: Recursion

Algorithm 37 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

ñ Tsucc(u) = 2Tsucc(
√
u)+ Tmin(

√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 354/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).

Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`)

= Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`)

= Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u)

= Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1

= X(`2
)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ` := logu and X(`) := Tmem(2`).Then

X(`) = Tmem(2`) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
`
2
)+ 1 = X(`2

)+ 1 .

Using Master theorem gives X(`) = O(log`), and hence

Tmem(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 355/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`).

Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`)

= Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`)

= Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u)

= 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1

= 2X
(`

2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ` := logu and X(`) := Tins(2`). Then

X(`) = Tins(2`) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
`
2
)+ 1 = 2X

(`
2

)+ 1 .

Using Master theorem gives X(`) = O(`), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 356/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`).

Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`)

= Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`)

= Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u)

= 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`)

= 2X
(`

2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 = 2Tdel(

√
u) + Θ(log(u)).

Set ` := logu and X(`) := Tdel(2`). Then

X(`) = Tdel(2`) = Tdel(u) = 2Tdel(
√
u)+Θ(logu)

= 2Tdel
(
2
`
2
)+Θ(`) = 2X

(`
2

)+Θ(`) .

Using Master theorem gives X(`) = Θ(` log`), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 357/596

Implementation 4: van Emde Boas Trees

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

3

min

13

max

ñ The bit referenced by min is not set within

sub-datastructures.

ñ The bit referenced by max is set within sub-datastructures (if

max ≠ min).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 358/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

ñ Recursive calls for min and max are constant time.

ñ min = null means that the data-structure is empty.

ñ min =max ≠ null means that the data-structure contains

exactly one element.

ñ We can insert into an empty datastructure in constant time

by only setting min =max = x.

ñ We can delete from a data-structure that just contains one

element in constant time by setting min =max = null.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 359/596

Implementation 4: van Emde Boas Trees

Algorithm 38 max()
1: return max;

Algorithm 39 min()
1: return min;

ñ Constant time.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 360/596

Implementation 4: van Emde Boas Trees

Algorithm 40 member(x)
1: if x =min then return 1; // TRUE

2: return cluster[high(x)].member(low(x));

ñ Tmem(u) = Tmem(
√
u)+ 1 =⇒ T(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 361/596

Implementation 4: van Emde Boas Trees

Algorithm 41 succ(x)
1: if min ≠ null ∧ x <min then return min;

2: maxincluster ← cluster[high(x)].max();
3: if maxincluster ≠ null ∧ low(x) <maxincluster then

4: offs ← cluster[high(x)]. succ(low(x));
5: return high(x) ◦ offs;

6: else

7: succcluster ← summary . succ(high(x));
8: if succcluster = null then return null;

9: offs ← cluster[succcluster].min();
10: return succcluster ◦ offs;

ñ Tsucc(u) = Tsucc(
√
u)+ 1 =⇒ Tsucc(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 362/596

Implementation 4: van Emde Boas Trees

Algorithm 42 insert(x)
1: if min = null then

2: min = x; max = x;

3: else

4: if x <min then exchange x and min;

5: if cluster[high(x)].min = null; then

6: summary . insert(high(x));
7: cluster[high(x)]. insert(low(x));
8: else

9: cluster[high(x)]. insert(low(x));
10: if x >max then max = x;

ñ Tins(u) = Tins(
√
u)+ 1 =⇒ Tins(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 363/596

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the

if-condition in Line 5 ensures that we are inserting in an empty

sub-tree.

The only non-constant recursive calls are the call in Line 6 and in

Line 9. These are mutually exclusive, i.e., only one of these calls

will actually occur.

From this we get that Tins(u) = Tins(
√
u)+ 1.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 364/596

Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 43 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 365/596

Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 43 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

find new minimum

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 365/596

Implementation 4: van Emde Boas Trees

ñ Assumes that x is contained in the structure.

Algorithm 43 delete(x)
1: if min =max then

2: min = null; max = null;

3: else

4: if x =min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min← x;

9: cluster[high(x)].delete(low(x));
continued...

delete

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 365/596

Implementation 4: van Emde Boas Trees

Algorithm 43 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 366/596

Implementation 4: van Emde Boas Trees

Algorithm 43 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 366/596

Implementation 4: van Emde Boas Trees

Algorithm 43 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 366/596

Implementation 4: van Emde Boas Trees

Algorithm 43 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x =max then

13: summax ← summary .max();
14: if summax = null then max←min;

15: else

16: offs ← cluster[summax].max();
17: max← summax ◦ offs

18: else

19: if x =max then

20: offs ← cluster[high(x)].max();
21: max← high(x) ◦ offs;

fix maximum

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 366/596

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and

Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the

cluster where x was deleted is now empty. But this means that

the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form

Tdel(u) = Tdel(
√
u)+ c .

This gives Tdel(u) = O(log logu).

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 367/596

9 van Emde Boas Trees

Space requirements:

ñ The space requirement fulfills the recurrence

S(u) = (√u+ 1)S(
√
u)+O(√u) .

ñ Note that we cannot solve this recurrence by the Master

theorem as the branching factor is not constant.

ñ One can show by induction that the space requirement is

S(u) = O(u). Exercise.

EADS 9 van Emde Boas Trees

c© Ernst Mayr, Harald Räcke 368/596

10 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set that

contains x. Returns a representative/identifier for this set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 369/596

10 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set that

contains x. Returns a representative/identifier for this set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 369/596

10 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set that

contains x. Returns a representative/identifier for this set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 369/596

10 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

ñ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

ñ P. find(x): Given a handle for an element x; find the set that

contains x. Returns a representative/identifier for this set.

ñ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 369/596

10 Union Find

Applications:

ñ Keep track of the connected components of a dynamic graph

that changes due to insertion of nodes and edges.

ñ Kruskals Minimum Spanning Tree Algorithm

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 370/596

10 Union Find

Applications:

ñ Keep track of the connected components of a dynamic graph

that changes due to insertion of nodes and edges.

ñ Kruskals Minimum Spanning Tree Algorithm

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 370/596

10 Union Find

Algorithm 44 Kruskal-MST(G = (V , E),w)
1: A← �;
2: for all v ∈ V do

3: v. set← P.makeset(v. label)
4: sort edges in non-decreasing order of weight w
5: for all (u,v) ∈ E in non-decreasing order do

6: if P.find(u. set) ≠ P.find(v. set) then

7: A← A∪ {(u,v)}
8: P.union(u. set, v. set)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 371/596

List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

�

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 372/596

List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

�

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 372/596

List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

�

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 372/596

List Implementation

ñ The elements of a set are stored in a list; each node has a

backward pointer to the head.

ñ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

�

ñ makeset(x) can be performed in constant time.

ñ find(x) can be performed in constant time.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 372/596

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sy .

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 373/596

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sy .

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 373/596

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sy .

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 373/596

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sy .

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 373/596

List Implementation

union(x, y)
ñ Determine sets Sx and Sy .

ñ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sy .

ñ Insert list Sy at the head of Sx.

ñ Adjust the size-field of list Sx.

ñ Time: min{|Sx|, |Sy |}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 373/596

List Implementation

Sx
7

a b c d x f g

�

Sy
4

h i y j

�

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 374/596

List Implementation

Sx
7

a b c d x f g

�

Sy
4

h i y j

�

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 374/596

List Implementation

Sx
7

a b c d x f g

�

Sy
4

h i y j

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 374/596

List Implementation

Sx
11

a b c d x f g

�

h i y j

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 374/596

List Implementation

Running times:

ñ find(x): constant

ñ makeset(x): constant

ñ union(x,y): O(n), where n denotes the number of

elements contained in the set system.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 375/596

List Implementation

Lemma 35
The list implementation for the ADT union find fulfills the

following amortized time bounds:

ñ find(x): O(1).
ñ makeset(x): O(logn).
ñ union(x,y): O(1).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 376/596

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 377/596

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 377/596

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 377/596

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 377/596

The Accounting Method for Amortized Time Bounds

ñ There is a bank account for every element in the data

structure.

ñ Initially the balance on all accounts is zero.

ñ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

ñ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

ñ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 377/596

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 378/596

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 378/596

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 378/596

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 378/596

List Implementation

ñ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

ñ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

ñ For each element a makeset operation occurs as the first

operation involving this element.

ñ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
ñ Later operations charge the account but the balance never

drops below zero.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 378/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

makeset(x) : The actual cost is O(1). Due to the cost inflation

the amortized cost is O(logn).

find(x) : For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
ñ If Sx = Sy the cost is constant; no bank accounts change.

ñ Otw. the actual cost is O(min{|Sx|, |Sy |}).
ñ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
ñ Charge c to every element in set Sx.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 379/596

List Implementation

Lemma 36
An element is charged at most blog2nc times, where n is the total

number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in x’s

set doubles. This can happen at most blognc times.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 380/596

List Implementation

Lemma 36
An element is charged at most blog2nc times, where n is the total

number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in x’s

set doubles. This can happen at most blognc times.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 380/596

Implementation via Trees

ñ Maintain nodes of a set in a tree.

ñ The root of the tree is the label of the set.

ñ Only pointer to parent exists; we cannot list all elements of a

given set.

ñ Example:
10

12 5

2

6

9

3

8

14 17

7

16

19 23

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 381/596

Implementation via Trees

ñ Maintain nodes of a set in a tree.

ñ The root of the tree is the label of the set.

ñ Only pointer to parent exists; we cannot list all elements of a

given set.

ñ Example:
10

12 5

2

6

9

3

8

14 17

7

16

19 23

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 381/596

Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of element

x to the root in its tree. Not constant.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 382/596

Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of element

x to the root in its tree. Not constant.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 382/596

Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of element

x to the root in its tree. Not constant.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 382/596

Implementation via Trees

makeset(x)
ñ Create a singleton tree. Return pointer to the root.

ñ Time: O(1).

find(x)
ñ Start at element x in the tree. Go upwards until you reach

the root.

ñ Time: O(level(x)), where level(x) is the distance of element

x to the root in its tree. Not constant.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 382/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)

ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

7

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).

ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

7

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

7

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

7

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

7

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

11

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees
To support union we store the size of a tree in its root.

union(x, y)
ñ Perform a← find(x); b ← find(y). Then: link(a, b).
ñ link(a, b) attaches the smaller tree as the child of the larger.

ñ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

11

1

1

1

4

ñ Time: constant for link(a, b) plus two find-operations.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 383/596

Implementation via Trees

Lemma 37
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a tree

with root p, then size(p) ≥ 2 size(c), where size denotes the

value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 384/596

Implementation via Trees

Lemma 37
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a tree

with root p, then size(p) ≥ 2 size(c), where size denotes the

value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 384/596

Implementation via Trees

Lemma 37
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a tree

with root p, then size(p) ≥ 2 size(c), where size denotes the

value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 384/596

Implementation via Trees

Lemma 37
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

ñ When we attach a tree with root c to become a child of a tree

with root p, then size(p) ≥ 2 size(c), where size denotes the

value of the size-field right after the operation.

ñ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

ñ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 384/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12

2

5

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Path Compression

find(x):
ñ Go upward until you find the root.

ñ Re-attach all visited nodes as children of the root.

ñ Speeds up successive find-operations.

10

12

2

5

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

1

4

ñ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 385/596

Asymptotically the cost for a find-operation does not increase due

to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes

time O(logn).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 386/596

Asymptotically the cost for a find-operation does not increase due

to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes

time O(logn).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 386/596

Amortized Analysis

Definitions:

ñ size(v): the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

ñ rank(v): blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 38
The rank of a parent must be strictly larger than the rank of a

child.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 387/596

Amortized Analysis

Definitions:

ñ size(v): the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

ñ rank(v): blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 38
The rank of a parent must be strictly larger than the rank of a

child.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 387/596

Amortized Analysis

Definitions:

ñ size(v): the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

ñ rank(v): blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 38
The rank of a parent must be strictly larger than the rank of a

child.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 387/596

Amortized Analysis

Definitions:

ñ size(v): the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

ñ rank(v): blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 38
The rank of a parent must be strictly larger than the rank of a

child.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 387/596

Amortized Analysis

Definitions:

ñ size(v): the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

ñ rank(v): blog(size(v))c.
ñ =⇒ size(v) ≥ 2rank(v).

Lemma 38
The rank of a parent must be strictly larger than the rank of a

child.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 387/596

Amortized Analysis

Lemma 39
There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees the rank s node x if v is in x’s

sub-tree at the time that x becomes a child.

ñ A node v sees at most one node of rank s during the running

time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contains v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 388/596

Amortized Analysis

Lemma 39
There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees the rank s node x if v is in x’s

sub-tree at the time that x becomes a child.

ñ A node v sees at most one node of rank s during the running

time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contains v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 388/596

Amortized Analysis

Lemma 39
There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees the rank s node x if v is in x’s

sub-tree at the time that x becomes a child.

ñ A node v sees at most one node of rank s during the running

time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contains v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 388/596

Amortized Analysis

Lemma 39
There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees the rank s node x if v is in x’s

sub-tree at the time that x becomes a child.

ñ A node v sees at most one node of rank s during the running

time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contains v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 388/596

Amortized Analysis

Lemma 39
There are at most n/2s nodes of rank s.

Proof.

ñ Let’s say a node v sees the rank s node x if v is in x’s

sub-tree at the time that x becomes a child.

ñ A node v sees at most one node of rank s during the running

time of the algorithm.

ñ This holds because the rank-sequence of the roots of the

different trees that contains v during the running time of the

algorithm is a strictly increasing sequence.

ñ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 388/596

Amortized Analysis

We define

tow(i) :=



1 if i = 0

2tow(i−1) otw.

tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 40
Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 389/596

Amortized Analysis

We define

tow(i) :=



1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 40
Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 389/596

Amortized Analysis

We define

tow(i) :=



1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 40
Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 389/596

Amortized Analysis

We define

tow(i) :=



1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) :=min{i | tow(i) ≥ n} .

Theorem 40
Union find with path compression fulfills the following amortized

running times:

ñ makeset(x) : O(log∗(n))
ñ find(x) : O(log∗(n))
ñ union(x,y) : O(log∗(n))

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 389/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

In the following we assume n ≥ 3.

rank-group:

ñ A node with rank rank(v) is in rank group log∗(rank(v)).
ñ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

ñ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
ñ The maximum non-empty rank group is

log∗(blognc) ≤ log∗(n)− 1 (which holds for n ≥ 3).

ñ Hence, the total number of rank-groups is at most log∗n.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 390/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Amortized Analysis

Accounting Scheme:

ñ create an account for every find-operation

ñ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

ñ If parent[v] is the root we charge the cost to the

find-account.

ñ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

ñ Otherwise we charge the cost to the find-account.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 391/596

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1) ≤ tow(g).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 392/596

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1) ≤ tow(g).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 392/596

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1) ≤ tow(g).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 392/596

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1) ≤ tow(g).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 392/596

Observations:

ñ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

ñ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

ñ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

ñ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1) ≤ tow(g).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 392/596

What is the total charge made to nodes?

ñ The total charge is at most

∑
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 393/596

What is the total charge made to nodes?

ñ The total charge is at most

∑
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 393/596

For g ≥ 1 we have

n(g)

≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s

≤ n
2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1)

= n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g)

≤ n(0) tow(0)+
∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g)

≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
= n

2tow(g−1)+1

tow(g)−tow(g−1)−1∑

s=0

1
2s

≤ n
2tow(g−1)+1

∞∑

s=0

1
2s
≤ n

2tow(g−1)+1 · 2

≤ n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 394/596

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 395/596

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 395/596

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 396/596

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 396/596

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 396/596

A(x,y) =




y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) =min{i ≥ 1 : A(i, bm/nc) ≥ logn}

ñ A(0, y) = y + 1

ñ A(1, y) = y + 2

ñ A(2, y) = 2y + 3

ñ A(3, y) = 2y+3 − 3

ñ A(4, y) = 2222

︸ ︷︷ ︸
y+3 times

−3

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 397/596

A(x,y) =




y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) =min{i ≥ 1 : A(i, bm/nc) ≥ logn}

ñ A(0, y) = y + 1

ñ A(1, y) = y + 2

ñ A(2, y) = 2y + 3

ñ A(3, y) = 2y+3 − 3

ñ A(4, y) = 2222

︸ ︷︷ ︸
y+3 times

−3

EADS 10 Union Find

c© Ernst Mayr, Harald Räcke 397/596

	Data Structures
	Dictionary
	Binary Search Trees
	Red Black Trees
	AVL-Trees
	(a,b)-trees
	Skip Lists
	Augmenting Data Structures
	Hashing

	Priority Queues
	Binary Heaps
	Binomial Heaps
	Fibonacci Heaps

	van Emde Boas Trees
	Union Find

