2.3 Primitive Elemente

Definition 128

Sei K ein endlicher Körper. Ein Element a, das die multiplikative Gruppe $K^*=K\setminus\{0\}$ erzeugt, nennt man primitives Element.

Beispiel 129

In \mathbb{Z}_5^* sind sowohl 2 als auch 3 primitive Elemente:

$2^0 =$	1	$3^0 = 1$
$2^1 =$	2	$3^1 = 3$
$2^2 =$	4	$3^2 = 4$
$2^3 =$	3	$3^3 = 2$
$2^4 =$	1	$3^4 = 1$

Bemerkung: $\langle \mathbb{Z}_4, +_4, \cdot_4, 0, 1 \rangle$ ist kein Körper!

Beispiel 130

Setzt man $K = \{0, 1, a, b\}$ und definiert eine Addition und Multiplikation wie folgt:

	0				
0	0	1	\overline{a}	b	
1	1	0	b	a	
a	a	b	0	1	
b	0 1 a b	a	1	0	

\odot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

so bildet $\langle K, \oplus, \odot, 0, 1 \rangle$ einen Körper (Übung!).

3. Polynome

3.1 Definition und Grundlagen

Definition 131

Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 ,$$

wobei $n \in \mathbb{N}_0$, $a_i \in R$ und $a_n \neq 0$.

n heißt der Grad des Polynoms, a_0, \ldots, a_n seine Koeffizienten.

Die Funktion p ordnet jedem Wert $x_0 \in R$ den Wert $p(x_0) \in R$ zu, ist also eine Funktion von R nach R.

R[x] bezeichnet die Menge der Polynome über dem Ring R in der Variablen x.

Bemerkungen:

- **1** Das Nullpolynom p(x) = 0 hat Grad 0.
- **2** Formal kann das Polynom $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ auch mit der Folge (a_0, a_1, \ldots, a_n) gleichgesetzt werden.

Beispiel 132

- $p(x) = x^2 2x + 1$ ist ein Polynom vom Grad 2.
- Eine lineare Funktion f(x) = ax + b mit $a \neq 0$ ist ein Polynom vom Grad 1.
- Konstante Funktionen f(x) = c sind Polynome vom Grad 0.

3.2 Rechnen mit Polynomen

Berechnung des Funktionswertes

Um den Wert eines Polynoms an einer bestimmten Stelle $x_0 \in R$ zu bestimmen, verwendet man am besten das sogenannte Hornerschema:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $((\dots (((a_n x + a_{n-1})x + a_{n-2})x + \dots)x + a_1)x + a_0.$

Hat man die Koeffizienten in einem Array a[0..n] abgespeichert, kann man den Funktionswert $p(x_0)$ daher wie folgt berechnen:

```
\begin{array}{l} \underline{\mathtt{begin}} \\ p \leftarrow a[n] \\ \underline{\mathtt{for}} \ i = \mathtt{n-1} \ \underline{\mathtt{downto}} \ \mathtt{0} \ \underline{\mathtt{do}} \\ p \leftarrow p \cdot x_0 + a[i] \\ \underline{\mathtt{end}} \\ \underline{\mathtt{return}}(p) \\ \mathtt{end} \end{array}
```

Beobachtung:

Für die Auswertung eines Polynoms vom Grad n genügen damit O(n) Multiplikationen und Additionen.

Addition

Die Summe zweier Polynome $a(x)=a_nx^n+\cdots+a_1x+a_0$ und $b(x)=b_mx^m+\cdots+b_1x+b_0$ ist (sei o.B.d.A. $m\leq n$) definiert durch

$$(a+b)(x) = c_n x^n + \dots + c_1 x + c_0$$
, wobei $c_i = a_i + b_i$.

Bemerkungen:

- An sich fehlende Koeffizienten sind gleich 0 gesetzt.
- Für den Grad des Summenpolynoms gilt

$$grad(a + b) \le max\{grad(a), grad(b)\}$$
.

Beispiel 133

- Für $a(x) = x^2 3x + 5$ und b(x) = 4x + 2 ergibt sich $(a + b)(x) = x^2 + x + 7$. Hier gilt grad(a + b) = 2 = grad(a).
- ② Für $a(x)=x^3+1$ und $b(x)=-x^3+1$ ergibt sich hingegen (a+b)(x)=2 und somit $\operatorname{grad}(a+b)=0<3=\max\{\operatorname{grad}(a),\operatorname{grad}(b)\}.$

Beobachtung:

Die Summe (und natürlich auch die Differenz) zweier Polynome vom Grad $\leq n$ lässt sich in O(n) arithmetischen Schritten berechnen.

Multiplikation

Das Produkt zweier Polynome $a(x)=a_nx^n+\cdots+a_1x+a_0$ und $b(x)=b_mx^m+\cdots+b_1x+b_0$ erhält man durch Ausmultiplizieren und anschliessendes Sortieren und Zusammenfassen der Koeffizienten. Also

$$(a \cdot b)(x) = c_{n+m}x^{n+m} + \dots + c_1x + c_0$$
, wobei $c_i = \sum_{j=0}^{i} a_j b_{i-j}$.

Für den Grad des Produktpolynoms gilt

$$\operatorname{grad}(a \cdot b) = \operatorname{grad}(a) + \operatorname{grad}(b)$$
,

falls R nullteilerfrei sowie $a \neq 0 \neq b$ ist, ansonsten

$$grad(a \cdot b) \le grad(a) + grad(b)$$
.

Beispiel 134

Für $a(x) = x^2 - 3x + 5$ und b(x) = 4x + 2 ergibt sich

$$(a \cdot b)(x) = (1 \cdot 4)x^3 + (1 \cdot 2 + (-3) \cdot 4)x^2 + ((-3) \cdot 2 + 5 \cdot 4)x + 5 \cdot 2$$
$$= 4x^3 - 10x^2 + 14x + 10.$$

Man sagt auch, dass die Koeffizienten

$$c_i = \sum_{j=0}^i a_j b_{i-j}$$

des Produktpolynoms durch Faltung der Koeffizientenfolgen von a(x) und b(x) entstehen.

Beobachtung:

Das Produkt zweier Polynome vom Grad $\leq n$ lässt sich in Zeit $O(n^2)$ berechnen.

Es gibt dafür aber auch schnellere Algorithmen!

Division

Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

$$2x^{4} + x^{3} + x + 3 \text{ div } x^{2} + x - 1 = 2x^{2} - x + 3$$

$$- (2x^{4} + 2x^{3} - 2x^{2})$$

$$-x^{3} + 2x^{2} + x + 3$$

$$- (-x^{3} - x^{2} + x)$$

$$3x^{2} + 3$$

$$- (3x^{2} + 3x - 3)$$

$$- 3x + 6$$

Satz 135

Zu je zwei Polynomen a(x) und b(x), $b \neq 0$, gibt es eindeutig bestimmte Polynome q(x) und r(x), so dass

$$a(x) = q(x)b(x) + r(x)$$
 und $r = 0$ oder $grad(r) < grad(b)$.

Beispiel 136

Im vorhergehenden Schema war das

$$\underbrace{2x^4 + x^3 + x + 3}_{a(x)} = \underbrace{(2x^2 - x + 3)}_{q(x)} \cdot \underbrace{(x^2 + x - 1)}_{b(x)} + \underbrace{(-3x + 6)}_{r(x)}$$

Beweis:

Gilt grad(a) < grad(b), so kann man q=0 und r=a setzen. Sei also $grad(a) \ge grad(b)$.

Induktion über grad(a):

Ist $\operatorname{grad}(a)=0$, so folgt aus $\operatorname{grad}(a)\geq\operatorname{grad}(b)$, dass a und b beides konstante Funtionen sind. Also $a(x)=a_0$ und $b(x)=b_0$ mit $b_0\neq 0$. Wir können daher $q(x)=a_0/b_0$ und r(x)=0 setzen.

Beweis (Forts.):

Ist grad(a) = n > 0 und grad(b) = m, $m \le n$, und

$$a(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0,$$

 $b(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0, \quad b_m \neq 0$

so setzen wir

$$\tilde{a}(x) = a(x) - (a_n/b_m)x^{n-m} \cdot b(x) .$$

Dann gilt $\operatorname{grad}(\tilde{a}) < \operatorname{grad}(a)$.

Nach Induktionsannahme gibt es daher Polynome $\tilde{q}(x)$ und $\tilde{r}(x)$ mit $\tilde{a}(x) = \tilde{q}(x) \cdot b(x) + \tilde{r}(x)$, mit $\tilde{r}(x) = 0$ oder $\operatorname{grad}(\tilde{r}) < \operatorname{grad}(b)$ (falls m = n, wird $\tilde{q}(x) = 0$ und $\tilde{r}(x) = \tilde{a}(x)$. Es gilt

$$a(x) = (a_n/b_m)x^{n-m}b(x) + \tilde{q}(x)b(x) + \tilde{r}(x) =: q(x)b(x) + r(x)$$
.

Beweis (Forts.):

Um die Eindeutigkeit zu beweisen, nehmen wir an, es gäbe für Polynome a und b zwei Darstellungen wie im Satz angegeben. Also $q \cdot b + r = a = \hat{q} \cdot b + \hat{r}$ und somit auch

$$(q - \hat{q}) \cdot b = (\hat{r} - r).$$

Falls $q \neq \hat{q}_i$ ist die linke Seite ein Polynom vom Grad $\geq \operatorname{grad}(b)$. Da die rechte Seite aus der Differenz zweier Polynome vom Grad kleiner als grad(b) besteht, Widerspruch! Also ist $q = \hat{q}$ und damit auch $r = \hat{r}$.

Beobachtung:

Für zwei Polynome a und b von Grad höchstens n kann man die Polynome q und r aus Satz 135 wie im Beispiel bestimmen. Da sich der Grad des Polynoms in jeder Zeile verringert, benötigen wir also höchstens n Multiplikationen von Polynomen mit Konstanten und n Subtraktionen von Polynomen vom Grad höchstens n.

Insgesamt ergibt sich:

Die Division zweier Polynome vom Grad $\leq n$ lässt sich in Zeit $O(n^2)$ berechnen.

Beobachtung:

Falls der führende Koeffizient des Divisorpolynoms gleich 1 ist, lässt sich die Division auch über einem Ring R durchführen.

3.3 Nullstellen von Polynomen

Definition 137

Eine Nullstelle eines Polynoms p ist ein Wert x_0 mit $p(x_0) = 0$.

Lemma 138

Sei $p \in R[x]$, $x_0 \in R$ eine Nullstelle von p. Dann ist p(x) ohne Rest durch $x - x_0$ teilbar.

Beweis:

Nach Satz 135 gibt es Polynome q und r mit $p(x) = q(x) \cdot (x - x_0) + r(x)$ und $\operatorname{grad}(r) < \operatorname{grad}(x - x_0) = 1$, also $\operatorname{grad}(r) = 0$, d.h. $r(x) = r_0$. Wegen $p(x_0) = q(x_0) \cdot (x_0 - x_0) + r_0 = r_0$ muss also r_0 gleich Null sein. D.h., $p(x) = q(x) \cdot (x - x_0).$

Satz 139 (Fundamentalsatz der Algebra)

Jedes Polynom $p \neq 0$ mit Grad n hat höchstens n Nullstellen.

Beweis:

Wir zeigen den Satz durch Induktion über den Grad des Polynoms. Ist p ein Polynom mit Grad 0, so ist die Aussage wegen der Annahme $p \neq 0$ offenbar richtig. Ist p ein Polynom mit Grad n>0, so hat p entweder keine Nullstelle (und die Aussage ist somit trivialerweise richtig) oder p hat mindestens eine Nullstelle a. Dann gibt es nach Lemma 138 eine Darstellung $p(x) = q(x) \cdot (x-a)$ mit grad(q) = n-1. Nach Induktionsannahme hat q höchstens n-1 und somit p höchstens n Nullstellen.

Beispiele 140

- Das Polynom $x^2 1 = (x+1)(x-1)$ über $\mathbb R$ hat zwei Nullstellen x = +1 und x=-1 in \mathbb{R} .
- Das Polynom $x^2 + 1$ hat keine einzige reelle Nullstelle.
- Das Polynom $x^2 + 1$ hat die beiden komplexen Nullstellen x = i und x = -i, wobei i die imaginäre Einheit bezeichnet, also $i = \sqrt{-1}$.

Bemerkung: \mathbb{C} ist algebraisch abgeschlossen, da jedes Polynom $\in \mathbb{C}[x]$ vom Grad ≥ 1 mindestens eine Nullstelle $\in \mathbb{C}$ hat; \mathbb{R} und \mathbb{Q} sind nicht algebraisch abgeschlossen.

3.4 Partialbruchzerlegung

Beispiel 141

Finde zu $\frac{g}{f} = \frac{x^2+1}{(x-1)^2(x-2)}$ Polynome p,q mit $\operatorname{grad}(p) < 2$, $\operatorname{grad}(q) < 1$ und

$$\frac{x^2+1}{(x-1)^2(x-2)} = \frac{p}{(x-1)^2} + \frac{q}{x-2}.$$
 (*)

Die r.S. von (*) heißt Partialbruchzerlegung von $\frac{g}{x}$.

Ansatz: p(x) = ax + b, q(x) = c.

$$\frac{p}{(x-1)^2} + \frac{q}{x-2} = \frac{(x-2) \cdot p + (x-1)^2 \cdot q}{(x-1)^2 (x-2)}.$$

Durch Vergleich mit (*) erhält man

$$x^{2} + 1 = (ax + b)(x - 2) + c(x - 1)^{2}$$
$$= (a + c)x^{2} + (b - 2a - 2c)x + c - 2b.$$

Koeffizientenvergleich liefert folgendes lineares Gleichungssystem:

$$a+c = 1$$

$$b-2a-2c = 0$$

$$c-2b = 1$$

Dieses hat die eindeutige Lösung $a=-4, \quad b=2, \quad c=5.$ Somit gilt:

$$\frac{x^2+1}{(x-1)^2(x-2)} = \frac{-4x+2}{(x-1)^2} + \frac{5}{x-2}.$$

Satz 142 (Partialbruchzerlegung)

Seien $f,g \in K[x]$ ($K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$) Polynome mit grad(g) < grad(f), und es gelte

$$f(x) = (x - \alpha_1)^{m_1} \cdot \ldots \cdot (x - \alpha_r)^{m_r}$$

mit $\mathbb{N} \ni m_i \ge 1$ und paarweise verschiedenen $\alpha_i \in K$ (i = 1, ..., r). Dann gibt es eindeutig bestimmte Polynome $g_1, ..., g_r \in K[x]$ mit $\operatorname{grad}(g_i) < m_i$, so dass gilt:

$$\frac{g}{f} = \frac{g_1}{(x - \alpha_1)^{m_1}} + \dots + \frac{g_r}{(x - \alpha_r)^{m_r}}.$$

Beweis:

Induktion nach r. Für r=1 ist nichts zu zeigen. Es gelte r>1. Sei $\tilde{f}=(x-\alpha_2)^{m_2}\cdot\ldots\cdot(x-\alpha_r)^{m_r}$. Dann gilt $f=(x-\alpha_1)^{m_1}\tilde{f}$. Sei $d=\operatorname{grad}(f)$ und $\tilde{d}=\operatorname{grad}(\tilde{f})$. Es genügt nun, Folgendes zu zeigen:

Zwischenbehauptung: Es gibt eindeutig bestimmte Polynome $A,B\in K[x]$ mit $\operatorname{grad}(A)< m_1,\ \operatorname{grad}(B)< \tilde{d}$, so dass

$$\frac{g}{f} = \frac{A}{(x - \alpha_1)^{m_1}} + \frac{B}{\tilde{f}} \tag{1}$$

gilt.

(Wendet man auf $\frac{B}{\tilde{f}}$ die Induktionsbehauptung an, so folgt die Behauptung des Satzes.)

Gleichung (1) ist äquivalent zu

$$A\tilde{f} + B(x - \alpha_1)^{m_1} = g. \tag{2}$$

Wir machen den Ansatz: $A = \sum_{i=0}^{m_1-1} a_i x^i$, $B = \sum_{i=0}^{\tilde{d}-1} b_i x^i$.

Durch Koeffizientenvergleich mit (2) erhalten wir folgendes inhomogene lineare Gleichungssystem bestehend aus d Gleichungen in den Unbestimmten $a_{m_1-1}, \ldots, a_0, b_{\tilde{d}-1}, \ldots, b_0$:

$$M \cdot \begin{pmatrix} a_{m_1-1} \\ \vdots \\ a_0 \\ b_{\tilde{d}-1} \\ \vdots \\ b_0 \end{pmatrix} = \begin{pmatrix} c_{d-1} \\ \vdots \\ \vdots \\ \vdots \\ c_0 \end{pmatrix}, \tag{3}$$

wobei M eine $d \times d$ -Matrix ist, und $g = \sum_{i=0}^{d-1} c_i x^i$. Wir haben die Zwischenbehauptung bewiesen, wenn wir zeigen können, dass die Matrix Minvertierbar ($\det M \neq 0$) ist. Dazu benötigen wir das folgende Lemma.

Lemma 143

Seien $\tilde{A}, \tilde{B} \in K[x]$ Polynome mit $\operatorname{grad}(\tilde{A}) \geq 1$ und $\operatorname{grad}(\tilde{B}) \geq 1$. Gibt es dann Polynome $A, B \in K[x], A \neq 0$ oder $B \neq 0$, mit $grad(A) < grad(\tilde{A})$, $grad(B) < grad(\tilde{B})$ und

$$A\tilde{B} + B\tilde{A} = 0,$$

so sind \tilde{A} und \tilde{B} nicht teilerfremd.

Beweis:

Dies folgt sofort aus der Eindeutigkeit der Primfaktorzerlegung.

Beweis (Forts.):

Nun zurück zum Beweis von Satz 142. Angenommen $\det(M)=0$. Dann würde es einen Vektor $y=(a_{m_1-1},\dots,a_0,b_{\tilde{d}-1},\dots,b_0)^t\neq 0$ mit $M\cdot y=0$ geben, d.h. es würde Polynome $A=\sum_{i=0}^{m_1-1}a_ix^i$ und $B=\sum_{j=0}^{\tilde{d}-1}b_jx^j,\ A\neq 0$ oder $B\neq 0$, geben mit $\operatorname{grad}(A)< m_1,\operatorname{grad}(B)<\tilde{d}=\operatorname{grad}(\tilde{f})$ und $A\tilde{f}+B(x-\alpha_1)^{m_1}=0$.

Nach Lemma 143 wären dann \tilde{f} und $(x-\alpha_1)^{m_1}$ nicht teilerfremd. Dies ist jedoch ein Widerspruch zur Voraussetzung. Damit ist Satz 142 bewiesen.

