# 5.9 Permutationsgruppen

#### Definition 103

Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge  $U := \{1, 2, \dots, n\}$ .

 $S_n$  (Symmetrische Gruppe für n Elemente) bezeichnet die Menge aller Permutationen auf  $\{1,2,\ldots,n\}$ .

Sei nun  $\pi \in S_n$ . Es existiert folgende naive Darstellung:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n-1) & \pi(n) \end{pmatrix}$$

Kürzer schreibt man auch

$$\pi = \begin{pmatrix} \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n-1) & \pi(n) \end{pmatrix}$$

Sei  $a \in \{1, 2, 3, \dots, n\}$ . Betrachte die Folge

$$a = \pi^0(a), \ \pi^1(a), \ \pi^2(a), \ \pi^3(a), \ \dots$$

Aus dem Schubfachprinzip und der Kürzungsregel folgt, dass es ein minimales r = r(a)mit  $r \leq n$  gibt, so dass  $\pi^r(a) = a$ . Damit bildet

$$\left(a = \pi^{0}(a) \ \pi^{1}(a) \ \pi^{2}(a) \ \pi^{3}(a) \ \dots \ \pi^{r-1}(a)\right)$$

einen Zyklus der Permutation  $\pi \in S_n$ .

Umgekehrt liefert

$$(a \ \pi^1(a) \ \pi^2(a) \ \pi^3(a) \ \dots \ \pi^{r-1}(a))$$

eine zyklische Permutation der Zahlen

$$\{a, \ \pi^1(a), \ \pi^2(a), \ \pi^3(a), \ \dots, \ \pi^{r-1}(a)\} \subseteq \{1, 2, \dots, n\}.$$

#### Satz 104

Sei 
$$\pi = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \end{pmatrix}$$
 eine zyklische Permutation von  $\{1, 2, \dots, n\}$ , also

$$\pi: a_i \mapsto a_{(i+1) \bmod n}$$

# Dann gilt:

- $\bullet \quad \pi^k(a_i) = a_{(i+k) \bmod n}$

#### Beweis:

- 1 Leicht durch Induktion zu zeigen.
- ② Aus 1. folgt:  $\pi^n = \pi^0 = id$ . Wäre  $\operatorname{ord} \pi = m < n$ , dann hätte der Zyklus die Form  $\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{m-1} \end{pmatrix}$  und  $a_m$  wäre gleich  $a_0$ , was einen Widerspruch zur Voraussetzung darstellt.

# Satz 105

Jede Permutation aus  $S_n$  kann als Komposition (von endlich vielen) disjunkten Zyklen dargestellt werden.

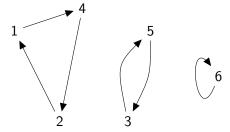
### Beweis:

Übung!



# Beispiel 106

$$\pi = (1 \ 4 \ 2)(3 \ 5)(6)$$



In diesem Beispiel ist (6) ein Fixpunkt und (3 5) eine Transposition (eine Permutation, die nur 2 Elemente vertauscht und alle anderen auf sich selbst abbildet).

# Bemerkung:

Disjunkte Zyklen können vertauscht werden.

## Korollar 107

Die Ordnung einer Permutation  $\pi$  ist das kgV der Längen ihrer Zyklen.

# 6. Boolesche Algebren

#### 6.1 Definitionen

Eine Boolesche Algebra ist eine Algebra

$$\langle S, \oplus, \otimes, \sim, 0, 1 \rangle$$
,

 $\oplus$ ,  $\otimes$  sind binäre,  $\sim$  ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt:

- $\bullet$  und  $\otimes$  sind assoziativ und kommutativ.
- $\bigcirc$  0 ist Einselement für  $\oplus$ , 1 ist Einselement für  $\otimes$ .
- $\bullet$  für  $\sim$  gilt:

$$b \oplus \sim b = 1$$
  
 $b \otimes \sim b = 0 \quad \forall b \in S.$ 

Oistributivgesetz:

$$b \otimes (c \oplus d) = (b \otimes c) \oplus (b \otimes d)$$
$$b \oplus (c \otimes d) = (b \oplus c) \otimes (b \oplus d)$$

# Bemerkung:

Eine boolesche Algebra ist keine Gruppe, weder bezüglich  $\oplus$   $(b \oplus \sim b = 1)$  noch bezüglich  $\otimes$ .

# Beispiel 108

- $\langle \mathbb{B}, \vee, \wedge, \neg, F, T \rangle$
- $\langle 2^U, \cup, \cap, \bar{}, \emptyset, U \rangle$
- $\langle \{1, 2, 3, 6\}, \text{kgV}, \text{ggT}, x \mapsto \frac{6}{x}, 1, 6 \rangle$



# George Boole (1815–1864)



George Boole lived from 1815 to 1864

**Boole** approached logic in a new way reducing it to a simple algebra, incorporating logic into mathematics. He also worked on differential equations, the calculus of finite differences and general methods in probability.



# Satz 109 (Eigenschaften Boolescher Algebren)

• Idempotenz:

$$(\forall b \in S) \Big[ b \oplus b = b \quad \land \quad b \otimes b = b \Big]$$

Nullelement:

$$(\forall b \in S) \Big[ b \oplus 1 = 1 \quad \land \quad b \otimes 0 = 0 \Big]$$

Absorption:

$$(\forall b, c \in S) \left[ b \oplus (b \otimes c) = b \quad \land \quad b \otimes (b \oplus c) = b \right]$$

Kürzungsregel:

$$(\forall b, c, d \in S) \begin{bmatrix} (b \oplus c = b \oplus d) \land (\sim b \oplus c = \sim b \oplus d) \Leftrightarrow c = d \\ (b \otimes c = b \otimes d) \land (\sim b \otimes c = \sim b \otimes d) \Leftrightarrow c = d \end{bmatrix}$$

# Satz 109 (Forts.)

eindeutiges Komplement:

$$(\forall b, c \in S) \Big[ b \oplus c = 1 \ \land \ b \otimes c = 0 \iff c = \sim b \Big]$$

Involution:

$$(\forall b \in S) \Big[ \sim (\sim b) = b \Big]$$

Konstanten:

$$\sim 0 = 1$$
  $\sim 1 = 0$ 

De-Morgan-Regeln:

$$(\forall b, c, d \in S) \begin{bmatrix} \sim (b \oplus c) = \sim b \otimes \sim c \\ \sim (b \otimes c) = \sim b \oplus \sim c \end{bmatrix}$$

Augustus de Morgan (1806–1871)

Wir zeigen zunächst die Teilbehauptung 7:

$$\sim 0 = 1$$
  $\sim 1 = 0$ 

## Beweis:

Mit b=0 folgt aus den Eigenschaften 2 und 3 Boolescher Algebren sofort

$$\sim 0 = 1$$
,

und ebenso mit b=1

$$\sim 1 = 0$$
,

womit wir Behauptung 7 gezeigt haben.



Folgende Hilfsbehauptung ist sehr nützlich:

$$1=1\oplus (0\otimes 1)=(1\oplus 0)\otimes (1\oplus 1)=1\otimes (1\oplus 1)=1\oplus 1\;.$$

# Beweis:

[Es werden nur Teile des Satzes bewiesen.]



$$b \oplus b = (1 \otimes b) \oplus (1 \otimes b) = (1 \oplus 1) \otimes b = 1 \otimes b = b$$



$$b \oplus 1 = b \oplus (b \oplus (\sim b)) = (b \oplus b) \oplus (\sim b) = b \oplus (\sim b) = 1$$

3

$$b \oplus (b \otimes c) = (b \otimes 1) \oplus (b \otimes c) = b \otimes (1 \oplus c) = b \otimes 1 = b$$



# Beobachtung:

Die Eigenschaften treten in Paaren auf, die durch Vertauschen von  $\oplus$  und  $\otimes$  und von 0 und 1 ineinander übergehen. Solche Eigenschaften heißen dual zueinander.

Da die Axiome unter Dualität abgeschlossen sind, folgt:

Das Duale eines Satzes ist wieder ein Satz.

#### Definition 110

Sei  $A = \langle S, \oplus, \otimes, \sim, 0, 1 \rangle$  eine endliche Boolesche Algebra. Dann definiert man:

$$\begin{array}{ll} a \leq b & \Longleftrightarrow & a \otimes b = a \\ a < b & \Longleftrightarrow & a \leq b \ \land \ a \neq b \end{array}$$



#### Satz 111

Durch  $\leq$  ist auf A eine partielle Ordnung definiert, d. h. eine reflexive, antisymmetrische und transitive Relation.

#### Beweis:

- (a) Reflexivität: Zu zeigen ist, dass für alle  $a \in S$  gilt a < a, d. h.  $a \otimes a = a$ (Idempotenzgesetz bzgl. ⊗)
- (b) Antisymmetrie: Sei  $a \le b \land b \le a$ . Damit gilt:  $a \otimes b = a$  und  $b \otimes a = b$  nach Definition. Damit:

$$a = a \otimes b = b \otimes a = b$$

(c) Transitivität: Sei  $a < b \land b < c$ , dann gilt:  $a \otimes b = a$  und  $b \otimes c = b$ . Es ist zu zeigen, dass  $a \leq c$ , d.h.  $a \otimes c = a$ .

$$a \otimes c = (a \otimes b) \otimes c = a \otimes (b \otimes c) = a \otimes b = a$$

