Algorithmus zur topologischen Nummerierung:

while $V \neq \emptyset$ do

nummeriere eine Quelle mit der nächsten Nummer streiche diese Quelle aus V

od

3.8 Zusammenhang

Definition 295

Ein Digraph heißt zusammenhängend, wenn der zugrundeliegende ungerichtete Graph zusammenhängend ist.

3.9 Starke Zusammenhangskomponenten

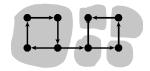
Definition 296

Sei G = (V, A) ein Digraph. Man definiert eine Äquivalenzrelation $R \subseteq V \times V$ wie folgt:

$$uRv \iff \left\{ \begin{array}{l} \text{es gibt in } G \text{ einen gerichteten Pfad von } u \text{ nach } v \\ \text{und einen gerichteten Pfad von } v \text{ nach } u. \end{array} \right.$$

Die von den Äquivalenzklassen dieser Relation induzierten Teilgraphen heißen die starken Zusammenhangskomponenten von G.

Beispiel 297



4. Durchsuchen von Graphen

Gesucht sind Prozeduren, die alle Knoten (eventuell auch alle Kanten) mindestens einmal besuchen und möglichst effizient sind.

4.1 Tiefensuche, Depth-First-Search

Sei G = (V, E) ein ungerichteter Graph, gegeben als Adjazenzliste.

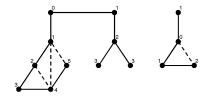

```
algorithm DFS
  void proc DFSvisit(node v)
     visited[v] := true
     pre[v] := ++precount
     \underline{\text{for}} \ \underline{\text{all}} \ u \in \underline{\text{adjacency\_list}[v]} \ \underline{\text{do}}
       if not visited [u] then
          type [(v,u)] := 'Baumkante'
          parent[u] := v
          DFSlevel[u] := DFSlevel[v]+1
          DFSvisit(u)
       elsif u \neq parent[v] then
          type[(v,u)] := 'R"uckw"artskante'
       fi
     od
     post[v] := ++postcount
  end proc
```

Fortsetzung

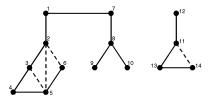
```
co Initialisierung: oc
  for all v \in V do
    visited[v] := false
    pre[v] := post[v] := 0
  od
  precount := postcount := 0
  for all v \in V do
    if not visited [v] then
      DFSlevel[v] := 0
      parent[v] := null
      DFSvisit(v)
    fi
  <u>od</u>
end
```


Beispiel 298 (gestrichelt sind Rückwärtskanten)

DFS-Level:

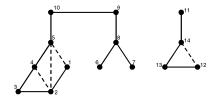


Präorder-Nummer:



Beispiel (Fortsetzung)

Postorder-Nummer:



Beobachtung: Die Tiefensuche konstruiert einen Spannwald des Graphen. Die Anzahl der Bäume entspricht der Anzahl der Zusammenhangskomponenten von ${\cal G}.$

Satz 299

Der Zeitbedarf für die Tiefensuche ist (bei Verwendung von Adjazenzlisten)

$$O(|V| + |E|)$$
.

Beweis:

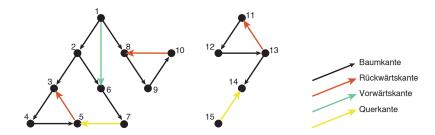
Aus Algorithmus ersichtlich.

Tiefensuche im Digraphen: Für gerichtete Graphen verwendet man obigen Algorithmus, wobei man die Zeilen

```
\frac{\text{elsif } u \neq \text{parent}[v] \text{ } \underline{\text{then}}}{\text{type}[(v,u)]} := \text{'R\"{u}ckw\"{a}rtskante'} \underline{\text{fi}} ersetzt durch
```

elsif pre[u] > pre[v] then
 type[(v,u)] := 'Vorwärtskante'
elsif post[u] ≠ 0 then
 type[(v,u)] := 'Querkante'
else
 type[(v,u)] := 'Rückwärtskante'
fi

Beispiel 300 (Präorder-Nummer)



4.2 Breitensuche, Breadth-First-Search

Sei G = (V, E) ein ungerichteter Graph, gegeben mittels Adjazenzlisten.

```
algorithm BFS
  for all v \in V do
    touched[v] := false
    bfsNum[v] := 0
  od
  count := 0
  queue := \emptyset
  for all v \in V do
    if not touched[v] then
      bfsLevel[v] := 0
      parent[v] := null
      queue.append(v)
      touched[v] := true
      while not empty(queue) do
        u := remove_first(queue)
        bfsNum[u] := ++count
```

Fortsetzung

```
for all w \in adjacency\_list[u] do
       if not touched \lceil w \rceil then
         type [(u, w)] := 'Baumkante'
         parent[w] := u
         bfsLevel[w] := bfsLevel[u]+1
         queue.append(w)
         touched[w] := true
       elsif not w = parent[u] then
         type [(u, w)] := 'Querkante'
       <u>fi</u>
    <u>od</u>
  od
<u>fi</u>
```

od end

Beobachtungen:

- Die Breitensuche konstruiert einen Spannwald.
- 2 Der Spannwald besteht genau aus den Baumkanten im Algorithmus.
- **3** (u, v) ist Querkante ⇒ |bfsLevel(u) bfsLevel(v)| ≤ 1

Satz 301

Der Zeitbedarf für die Breitensuche ist (bei Verwendung von Adjazenzlisten)

$$O(|V| + |E|)$$
.

Beweis:

Aus Algorithmus ersichtlich.

4.3 Matroide

Definition 302

Sei S eine endliche Menge, $U\subseteq 2^S$ eine Teilmenge der Potenzmenge von S. Dann heißt M=(S,U) ein Matroid und jedes $A\in U$ heißt unabhängige Menge, falls gilt:

- $0 \emptyset \in U$
- $arrow A \in U, B \subseteq A \implies B \in U$
- 3

$$A, B \in U, \ |B| = |A| + 1$$

$$\implies (\exists x \in B \setminus A) [(A \cup \{x\}) \in U]$$

Jede bezüglich \subseteq maximale Menge in U heißt Basis.

Nach 3. haben je zwei Basen gleiche Kardinalität. Diese heißt der Rang ${\bf r}(M)$ des Matroids.

Beispiel 303

Linear unabhängige Vektoren in einem Vektorraum.

Beispiel 304

G sei folgender Graph:

 $S = \mathsf{Menge} \; \mathsf{der} \; \mathsf{Kanten} \; \mathsf{von} \; G$

U = Menge der kreisfreien Teilmengen von S

4.4 Greedy-Algorithmus

Sei M = (S, U) ein Matroid, $w : S \to R$ eine Gewichtsfunktion.

```
\begin{array}{l} \underline{\text{algorithm}} \ \text{greedy}(S\,,U\,,w) \\ B := \emptyset \\ \underline{\text{while}} \ (|B| < \mathbf{r}(M)) \ \underline{\text{do}} \\ \text{sei} \ x \in \left\{ y \in S \setminus B; B \cup \left\{ y \right\} \in U \right\} \ \text{mit} \\ minimalem \ \text{Gewicht} \\ B := B \cup \left\{ x \right\} \\ \underline{\text{od}} \\ \text{end} \end{array}
```


Satz 305

Der Greedy-Algorithmus liefert eine Basis minimalen Gewichts.

Beweis:

Aus der Definition des Matroids (1.) folgt, dass die leere Menge \emptyset eine unabhängige Menge ist.

Aus 3. folgt, dass in der <u>while</u>-Schleife wiederum nur unabhängige Mengen generiert werden.

Daher ist B am Ende des Algorithmus eine Basis (da inklusionsmaximal). Es bleibt zu zeigen, dass die gefundene Basis minimales Gewicht besitzt.

Sei also $B=\{b_1,\ldots,b_r\}$ die vom Algorithmus gelieferte Basis. Sei b_1,\ldots,b_r die Reihenfolge der Elemente, in der sie der Greedy-Algorithmus ausgewählt hat. Dann gilt

$$w(b_1) \leq w(b_2) \leq \ldots \leq w(b_r).$$

Beweis (Forts.):

Sei weiter $B' = \{b'_1, \dots, b'_r\}$ eine minimale Basis, und es gelte o. B. d. A.

$$w(b_1') \le w(b_2') \le \ldots \le w(b_r') .$$

Sei $i \in \{1, ..., r\}$. Gemäß Eigenschaft 3 für Matroide folgt, dass es ein $b' \in \{b'_1, ..., b'_i\}$ gibt, so dass $\{b_1, ..., b_{i-1}, b'\} \in U$.

Damit ist $w(b_i) \leq w(b'_i)$ (für alle i), und daher wegen der Minimalität von B'

$$w(b_i) = w(b'_i)$$
 für alle i .