3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5.1 Grundlagen

Ein Polynom $P=\sum_i a_i x^i \in \mathbb{C}[x]$ vom Grad $\leq n$ ist eindeutig durch seine Koeffizienten a_i bestimmt, d.h. man hat eine Bijektion

$$\begin{aligned} \{ \text{Polynome} \in \mathbb{C}[x] \text{ vom Grad} & \leq n \} & \to & \mathbb{C}^{n+1} \\ P_{\vec{a}} & = \sum_{i=0}^n a_i x^i & \mapsto & \vec{a} = (a_0, \dots, a_n). \end{aligned}$$

Problem: $P_{\vec{a}} \cdot P_{\vec{b}} = P_{\vec{c}}$ mit $\vec{c} = (c_0, \dots, c_{2n})$, $c_k = \sum_i a_{k-i}b_i$, und die naive Berechnung von \vec{c} benötigt $\Theta(n^2)$ Operationen.

Bemerkung: $\vec{c} = \vec{a} * \vec{b}$ mit $c_k = \sum_i a_{k-i} b_i$ ist die Faltung von \vec{a} und \vec{b} .

Es gibt noch eine weitere eindeutige Darstellung eines Polynoms.

Lemma 144

Seien $P = \sum_{i=0}^n a_i x^i$ und $Q = \sum_{i=0}^n b_i x^i$ Polynome $(\in \mathbb{C}[x])$ vom Grad $\leq n$ und seien $\omega_0, \ldots, \omega_n \in \mathbb{C}$ paarweise verschiedene Elemente. Dann gilt:

$$P = Q \iff P(\omega_i) = Q(\omega_i)$$
 für alle $i = 0, \dots, n$.

Beweis:

..⇒": Klar.

 $_{n} \Leftarrow$ ": Es gelte $P(\omega_{i}) = Q(\omega_{i})$ für $i = 0, \ldots, n$. Dann ist jedes ω_{i} eine Nullstelle des Polynoms P-Q. Da $\operatorname{grad}(P-Q) \le n$ gilt, folgt P-Q=0 aus Satz 139.

Man kann leicht zeigen, dass es zu jedem Tupel $(b_0,\ldots,b_n)\in\mathbb{C}^{n+1}$ (genau) ein Polynom $f\in\mathbb{C}[x]$ vom Grad $\leq n$ gibt, mit $f(\omega_i)=b_i$ für $i=0,\ldots,n$ (z.B. das Newtonsche Interpolationspolynom, benannt nach Sir Isaac Newton (1643–1727)).

Somit erhalten wir eine weitere Bijektion:

Vorteil:

$$P \times Q \mapsto (P(\omega_0)Q(\omega_0), \dots, P(\omega_n)Q(\omega_n)) = (P(\omega_0), \dots, P(\omega_n)) \cdot (Q(\omega_0), \dots, Q(\omega_n)).$$

Multiplikation benötigt nur O(n) Operationen. "·" auf der rechten Seite bezeichnet hier das komponentenweise (Hadamard) Vektorprodukt (Jacques S. Hadamard (1865–1963)).

Problem: Bijektion i.a. zu komplex.

Definition 145

Ein $\omega \in \mathbb{C}$ heißt primitive n-te Einheitswurzel, wenn $\omega^k \neq 1$ für alle $k=1,\ldots,n-1$ und $\omega^n=1$ gilt, d.h. $\operatorname{ord}(\omega)=n$ in $\mathbb{C}^*=\mathbb{C}\setminus 0$.

Bemerkung: Es ist $\omega = e^{2i\pi/n}$ eine primitive *n*-te Einheitswurzel.

Definition 146

Sei $\omega \in \mathbb{C}$ eine primitive n-te Einheitswurzel, $n \in \mathbb{N}$. Die Abbildung

$$\mathcal{F}_{n,\omega}$$
: $\mathbb{C}^n \to \mathbb{C}^n$, $\vec{a} = (a_0, \dots, a_{n-1}) \mapsto (P_{\vec{a}}(1), P_{\vec{a}}(\omega), \dots, P_{\vec{a}}(\omega^{n-1}))$

heißt diskrete Fouriertransformation; wir schreiben auch kurz \mathcal{F} für $\mathcal{F}_{n,\omega}$.

Die Fouriertransformation ist nach Jean Baptiste Joseph Fourier (1768-1830) benannt.

Bemerkung: ${\mathcal F}$ is nach Lemma 144 und anschließender Bemerkung eine Bijektion.

Lemma 147

Seien $\vec{a}, \vec{b} \in \mathbb{C}^n$ so, dass auch $\vec{a} * \vec{b} \in \mathbb{C}^n$. Dann gilt

$$\mathcal{F}(\vec{a} * \vec{b}) = \mathcal{F}(\vec{a}) \cdot \mathcal{F}(\vec{b}).$$

Beweis:

Es gilt

$$\begin{split} \mathcal{F}(\vec{a}) \cdot \mathcal{F}(\vec{b}) &= (P_{\vec{a}}(1)P_{\vec{b}}(1), P_{\vec{a}}(\omega)P_{\vec{b}}(\omega), \dots, P_{\vec{a}}(\omega^{n-1})P_{\vec{b}}(\omega^{n-1})) \\ &= (P_{\vec{c}}(1), P_{\vec{c}}(\omega), \dots, P_{\vec{c}}(\omega^{n-1})) \\ &= \mathcal{F}(\vec{c}), \quad \text{mit } \vec{c} = \vec{a} * \vec{b}. \end{split}$$

Idee: Berechne $\vec{a}*\vec{b}$ vermöge $\mathcal{F}^{-1}(\mathcal{F}(\vec{a})\cdot\mathcal{F}(\vec{b}))$. Die komponentenweise Multiplikation $F(\vec{a})\cdot\mathcal{F}(\vec{b})$ benötigt nur O(n) Operationen.

Jedoch: $\mathcal F$ ist eine lineare Abbildung $\mathcal F(\vec a)=\Omega\cdot\vec a$, mit $\Omega=(\omega^{kl})_{0\le l,k\le n-1}$. Die Matrixmultiplikation benötigt aber $\Omega(n^2)$ Operationen (also keine offensichtliche Verbesserung im Vergleich zur klassischen Polynom-Multiplikation)!

Ausweg: "Divide and Conquer"!!!

3.5.2 Berechnung der diskreten Fouriertransformation (FFT)

Sei $n=2^k$ eine 2er-Potenz. Zerlege $\vec{a}=(a_0,\ldots,a_{n-1})$ in einen

geraden Anteil
$$\vec{a}_g=(a_0,a_2,\dots,a_{n-2})$$
 und einen ungeraden Anteil $\vec{a}_n=(a_1,a_3,\dots,a_{n-1})$

Dann gilt:

$$P_{\vec{a}}(x) = P_{\vec{a}_g}(x^2) + x P_{\vec{a}_u}(x^2).$$

Beispiel 148

Sei $\vec{a} = (1, 2, 4, 8)$, also $P_{\vec{a}}(x) = 1 + 2x + 4x^2 + 8x^3$. Damit ist $\vec{a}_q = (1, 4)$ und $\vec{a}_{n} = (2, 8)$, also

$$P_{\vec{a}_g}(x^2) + xP_{\vec{a}_u}(x^2)$$

$$= 1 \cdot (x^2)^0 + 4 \cdot (x^2)^1 + x \cdot (2 \cdot (x^2)^0 + 8 \cdot (x^2)^1)$$

$$= 1 + 2 \cdot x + 4 \cdot x^2 + 8 \cdot x^3$$

Lemma 149

Ist
$$\mathcal{F}_{\frac{n}{2},\omega^2}(\vec{a}_g)=(c_0,\ldots,c_{\frac{n}{2}-1})$$
 und $\mathcal{F}_{\frac{n}{2},\omega^2}(\vec{a}_u)=(d_0,\ldots,d_{\frac{n}{2}-1})$, so gilt $\mathcal{F}_{n,\omega}(\vec{a})=(e_0,\ldots,e_{n-1})$ mit

$$e_{i} = P_{\vec{a}}(\omega^{i})$$

$$= P_{\vec{a}_{g}}(\omega^{2i}) + \omega^{i} P_{\vec{a}_{u}}(\omega^{2i})$$

$$= c_{i} + \omega^{i} d_{i}$$

$$e_{\frac{n}{2}+i} = P_{\vec{a}}(\omega^{\frac{n}{2}+i})$$

$$= P_{\vec{a}_{g}}(\omega^{2(\frac{n}{2}+i)}) + \omega^{\frac{n}{2}+i} P_{\vec{a}_{u}}(\omega^{2(\frac{n}{2}+i)})$$

$$= c_{i} + \omega^{\frac{n}{2}+i} d_{i}$$

für
$$i = 0, \dots, \frac{n}{2} - 1$$
.

Bem.: ω^2 ist primitive $\frac{n}{2}$ -te Einheitswurzel. Natürlich ist $\omega^{2\frac{n}{2}}=1$.

Dies liefert folgenden Divide-and-Conquer-Algorithmus:

```
DFT(\vec{a},\omega)
    Eingabe: \vec{a} = (a_0, ..., a_{n-1}), n = 2^k. \omega
    Ausgabe: \mathcal{F}_{n,\omega}(\vec{a}) = (e_0, \dots, e_{n-1})
    if n=1 then e_0:=a_0
    else
       \vec{a}_a := (a_0, a_2, \dots, a_{n-2})
        \vec{a}_{n} := (a_{1}, a_{3}, \dots, a_{n-1})
        (c_0, \ldots, c_{\frac{n}{2}-1}) := \mathsf{DFT}(\vec{a}_q, \omega^2)
        (d_0,\ldots,d_{\frac{n}{2}-1}):=\mathtt{DFT}(\vec{a}_u,\omega^2)
        for i = 0 to \frac{n}{2} - 1 do
           e_i := c_i + \omega^i d_i
           e_{\frac{n}{2}+i} := c_i + \omega^{\frac{n}{2}+i} d_i
        endfor
    endif
    return(e_0,\ldots,e_{n-1})
```

Satz 150

Der Algorithmus DFT berechnet $\mathcal{F}_{n,\omega}(\vec{a})$ auf Eingabe $n=2^k$, \vec{a} , ω in $T(n)=O(n\log n)$ Operationen.

Beweis:

Aus dem Algorithmus erhält man folgende Rekursion

$$T(n) = 2T(n/2) + cn$$

mit einer Konstante c > 0 und T(1) = 1. Mit $n = 2^k$ folgt

$$T(2^k) = 2T(2^{k-1}) + cn = 2(2T(2^{k-2}) + cn/2) + cn$$

= ... = $2^{\ell}T(2^{k-\ell}) + \ell cn$

Speziell für $\ell=k$ gilt $T(2^k)=kc2^k+2^kT(1)$, und wir erhalten $T(2^k)=O(2^kk)=O(n\log n)$.

3.5.3 Berechnung der inversen diskreten Fouriertransformation

Satz 151

Es gilt

$$\mathcal{F}_{n,\omega}^{-1} = \frac{1}{n} \mathcal{F}_{n,\omega^{-1}}.$$

Bemerkung: ω^{-1} ist ebenso eine primitive n-te Einheitswurzel. Zum Beweis von Satz 151 benötigen wir folgendes Lemma:

Lemma 152

Ist ω eine primitive n-te Einheitswurzel, so gilt

$$\sum_{j=0}^{n-1} \omega^{kj} = 0$$

für alle $k = 1, \ldots, n-1$.

Beweis:

Für jedes
$$a \in \mathbb{C}$$
, $a \neq 1$, gilt $\sum_{j=0}^{n-1} a^j = \frac{a^n-1}{a-1}$. Speziell für $a = \omega^k$ ist $a^n = \omega^{kn} = 1$, $(k = 1, \ldots, n-1)$.

Nun zum Beweis von Satz 151.

Beweis:

Sei $\vec{e} = \mathcal{F}_{n,\omega}(\vec{a}) = (e_0, \dots, e_{n-1})$. Wir zeigen, dass gilt:

$$\frac{1}{n}\mathcal{F}_{n,\omega^{-1}}(\vec{e}) = \vec{a}$$

$$\begin{split} P_{\vec{e}}(\omega^{-k}) &= \sum_{j=0}^{n-1} e_j \omega^{-kj} = \sum_{j=0}^{n-1} P_{\vec{a}}(\omega^j) \omega^{-kj} \\ &= \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} a_i \omega^{ij} \omega^{-kj} = \sum_{i=0}^{n-1} a_i \sum_{j=0}^{n-1} \omega^{(i-k)j} = na_k, \end{split}$$

denn nach Lemma 152 ist $\sum_{i=0}^{n-1} \omega^{(i-k)j} = 0$, falls $i \neq k$.

Im Fall i = k gilt $\sum_{i=0}^{n-1} \omega^{(i-k)j} = n$.

