5.6 Satz von Fermat

Satz 94

Sei $b \in \mathbb{N}_0$ und $p \in \mathbb{N}$ eine Primzahl. Dann gilt:

$$b^p \equiv b \mod p$$
, (falls $b \not\equiv 0 \mod p$: $b^{p-1} \equiv 1 \mod p$)

(gemeint ist: die Gleichung $b^p = b$ gilt modulo p)

Reweis:

$$\mathbb{Z}_p^* := \{ n \in \{1, \dots, p-1\}; \operatorname{ggT}(n, p) = 1 \}$$

- 1. Fall: b = 0: $0^p = 0 \mod p$
- 2. Fall: $1 \leq b < p$: Betrachte $S_b = \langle \{b^0, b^1, \dots, b^{\operatorname{ord}(b)-1}\}, \cdot \rangle$.

 S_h ist Untergruppe von \mathbb{Z}_n^* .

Lagrange: $(\operatorname{ord}(b) =) |S_b| |\mathbb{Z}_p^*| (= p - 1)$

$$\Rightarrow (\exists q \in \mathbb{N})[q \cdot \operatorname{ord}(b)] = p - 1$$

Da $b^{\operatorname{ord}(b)} = 1$ (Einselement) ist, gilt:

$$b^p = b^{p-1} \cdot b = b^{q \cdot \operatorname{ord}(b)} \cdot b = 1^q \cdot b = b \operatorname{mod} p$$

3. Fall: $b \ge p$: Dann gilt:

$$(\exists q, r \in \mathbb{N}_0, 0 \le r < p)[b = q \cdot p + r].$$

Damit:

$$b^p = (q \cdot p + r)^p \stackrel{(*)}{=} r^p \mod p \stackrel{(**)}{=} r \mod p = b \mod p$$

- (*) Binomialentwicklung, die ersten p Summanden fallen weg, da jeweils $= 0 \mod p$;
- (**) Fall 1 bzw. 2

Die umgekehrte Richtung

Satz 95

Sei $n \in \mathbb{N}$, $n \geq 2$. Dann gilt:

$$b^{n-1} \equiv 1 \mod n$$
 für alle $b \in \mathbb{Z}_n \setminus \{0\} \Longrightarrow n$ ist prim.

Beweis:

[durch Widerspruch] Annahme: r|n für ein $r \in \mathbb{N}$, r > 1. Dann

$$r^{n-1} - 1 \equiv (r \operatorname{mod} n)^{n-1} - 1 \stackrel{\mathsf{n.V.}}{\equiv} 0 \operatorname{mod} n ,$$

also

$$r^{n-1} - 1 = q \cdot n = q \cdot q' \cdot r \text{ da } r | n .$$

Daraus folgt aber, dass r|1, n also keinen nichttrivialen Teiler besitzen kann.

Pierre de Fermat (1601–1665)

Definition 96 (Eulersche phi-Funktion)

Sei $n \in \mathbb{N}$, n > 1. Dann bezeichnet

$$\varphi(n) := |\mathbb{Z}_n^*|$$

die Anzahl der zu n teilerfremden Reste.

Satz 97

Sei $n \in \mathbb{N}$, n > 1. Dann gilt in der Gruppe $\langle \mathbb{Z}_n^*, \times_n, 1 \rangle$:

$$b^{\varphi(n)}=1$$
 für alle $b\in\mathbb{Z}_n^*$.

Beweis:

Folgt sofort aus dem Satz von Lagrange (Satz 93)!

Leonhard Euler (1707–1783)

Leonhard Euler (1707–1783)

5.7 Zyklische Gruppen

Definition 98

Eine Gruppe $G = \langle S, \circ, 1 \rangle$ heißt zyklisch, wenn es ein $b \in G$ gibt, so dass

$$G = S_b$$

wobei $S_b = \langle \{b^i | i \in \mathbb{Z}\}, \circ, 1 \rangle$.

Satz 99

Sei G eine zyklische Gruppe. Falls G unendlich ist, ist G zu $(\mathbb{Z},+,0)$ isomorph; falls G endlich ist, dann ist G isomorph zu $\langle \mathbb{Z}_m, +_m, 0 \rangle$ für ein $m \in \mathbb{N}$.

Beweis:

1. Fall: Sei G unendlich. Wir wissen: $G = \{b^i | i \in \mathbb{Z}\}$ für ein geeignetes $b \in G$, nach Voraussetzung. Betrachte die Abbildung

$$h: \mathbb{Z} \ni i \mapsto b^i \in G$$

Behauptung: h ist bijektiv.

Nach Voraussetzung ist h surjektiv.

Die Injektivität beweisen wir mittels Widerspruch.

 $(\exists i, j, i \neq j)[b^i = b^j]$ Annahme:

Daraus folgt:

$$b^{i-j} = 1$$

Daher ist G endlich, es gilt nämlich:

$$G \subseteq \{b^k; 0 \le k < |i - j|\}$$

Dies ist ein Widerspruch zur Annahme, G sei unendlich!

Beweis (Forts.):

2. Fall: G endlich:

Wiederum ist die Abbildung h nach Voraussetzung surjektiv. Nach dem Schubfachprinzip

$$(\exists i, j, i \neq j)[b^i = b^j]$$
.

Nach der Kürzungsregel können wir j=0 wählen. Falls i>0 und i minimal gewählt wird, folgt sofort

$$G$$
 isomorph $\langle \mathbb{Z}_i, +_i, 0 \rangle$.

Satz 100

Jede Untergruppe einer zyklischen Gruppe ist wieder zyklisch.

Beweis:

Sei G zyklisch, $H \subseteq G$ Untergruppe von G.

1. Fall: $|G| = \infty$, also $G \cong \langle \mathbb{Z}, +, 0 \rangle$ (\cong isomorph).

Sei H' die durch den Isomorphismus gegebene Untergruppe von $\langle \mathbb{Z}, +, 0 \rangle$, die H entspricht.

Zu zeigen ist: H' ist zyklisch.

Sei $i := \min \Big\{ k \in H'; k > 0 \Big\}.$

Die Behauptung ist:

$$H'=S_i$$
.

Es gilt sicher:

$$S_i \subseteq H'$$
.

Falls ein $k \in H' \setminus S_i$ existiert, folgt $k \mod i \in H'$. Dies stellt einen Widerspruch zur Wahl von i dar. Also ist $H' = S_i$, damit ist gezeigt, dass H' und daher auch H zyklisch ist.

2. Fall: $|G| < \infty$: Der Beweis läuft analog.

5.8 Transformationsgruppen

Definition 101

Eine Transformationsgruppe ist eine Gruppe von bijektiven Abbildungen einer Menge U auf sich selbst mit der Komposition \circ als binärem Operator:

$$g \circ f : U \ni x \mapsto g(f(x)) \in U$$

Satz 102 (Darstellungssatz für Gruppen)

Jede Gruppe ist isomorph zu einer Transformationsgruppe.

Beweis:

Sei $G = \langle S, \circ, 1 \rangle$, $g \in G$. Betrachte die Abbildung

$$\tilde{g}:S\ni a\mapsto g\circ a\in S$$

Aus der Kürzungsregel und der Existenz eines Inversen folgt, dass \tilde{q} eine bijektive Abbildung ist.

Wir betrachten nun $\tilde{G} := \langle \tilde{S}, \circ, \tilde{1} \rangle$ mit $\tilde{S} = \{\tilde{q}; q \in G\}$. Die Abbildung

$$\tilde{s}: S \ni g \mapsto \tilde{g} \in \tilde{S}$$

ist ein Gruppenisomorphismus. Für $h, g \in G$ gilt:

$$\widetilde{\left(h\circ g\right)}(a)=(h\circ g)\circ a=h\circ (g\circ a)=h\circ \widetilde{g}(a)=\widetilde{h}\big(\widetilde{g}(a)\big)=\big(\widetilde{h}\circ \widetilde{g}\big)(a)$$

5.9 Permutationsgruppen

Definition 103

Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge $U := \{1, 2, \dots, n\}$.

 S_n (Symmetrische Gruppe für n Elemente) bezeichnet die Menge aller Permutationen auf $\{1, 2, \ldots, n\}$.

Sei nun $\pi \in S_n$. Es existiert folgende naive Darstellung:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n-1) & \pi(n) \end{pmatrix}$$

Kürzer schreibt man auch

$$\pi = \begin{pmatrix} \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n-1) & \pi(n) \end{pmatrix}$$

Sei $a \in \{1, 2, 3, \dots, n\}$. Betrachte die Folge

$$a = \pi^0(a), \ \pi^1(a), \ \pi^2(a), \ \pi^3(a), \ \dots$$

Aus dem Schubfachprinzip und der Kürzungsregel folgt, dass es ein minimales r=r(a) mit $r\leq n$ gibt, so dass $\pi^r(a)=a$. Damit bildet

$$\left(a = \pi^{0}(a) \ \pi^{1}(a) \ \pi^{2}(a) \ \pi^{3}(a) \ \dots \ \pi^{r-1}(a)\right)$$

einen Zyklus der Permutation $\pi \in S_n$.

Umgekehrt liefert

$$(a \ \pi^1(a) \ \pi^2(a) \ \pi^3(a) \ \dots \ \pi^{r-1}(a))$$

eine zyklische Permutation der Zahlen

$$\{a, \ \pi^1(a), \ \pi^2(a), \ \pi^3(a), \ \dots, \ \pi^{r-1}(a)\} \subseteq \{1, 2, \dots, n\}.$$

Satz 104

Sei
$$\pi = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \end{pmatrix}$$
 eine zyklische Permutation von $\{1, 2, \dots, n\}$, also

$$\pi: a_i \mapsto a_{(i+1) \bmod n}$$

Dann gilt:

- $\bullet \quad \pi^k(a_i) = a_{(i+k) \bmod n}$

Beweis:

- 1 Leicht durch Induktion zu zeigen.
- ② Aus 1. folgt: $\pi^n = \pi^0 = id$. Wäre $\operatorname{ord} \pi = m < n$, dann hätte der Zyklus die Form $\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{m-1} \end{pmatrix}$ und a_m wäre gleich a_0 , was einen Widerspruch zur Voraussetzung darstellt.

Satz 105

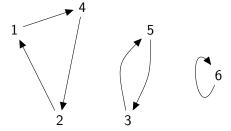
Jede Permutation aus S_n kann als Komposition (von endlich vielen) disjunkten Zyklen dargestellt werden.

Beweis:

Übung!

Beispiel 106

$$\pi = (1 \ 4 \ 2)(3 \ 5)(6)$$



In diesem Beispiel ist (6) ein Fixpunkt und (3 5) eine Transposition (eine Permutation, die nur 2 Elemente vertauscht und alle anderen auf sich selbst abbildet).

Bemerkung:

Disjunkte Zyklen können vertauscht werden.

Korollar 107

Die Ordnung einer Permutation π ist das kgV der Längen ihrer Zyklen.