3. Minimale Spannbäume

Sei G=(V,E) ein einfacher ungerichteter Graph, der o.B.d.A. zusammenhängend ist. Sei weiter $w:E\to\mathbb{R}$ eine Gewichtsfunktion auf den Kanten von G. Wir setzen

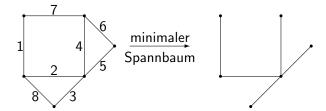
- $E' \subseteq E$: $w(E') = \sum_{e \in E'} w(e)$,
- T = (V', E') ein Teilgraph von G: w(T) = w(E').

Definition 99

T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

 $w(T) \leq w(T')$ für alle Spannbäume T' von G.

Beispiel 100



Anwendungen:

- Telekom: Verbindungen der Telefonvermittlungen
- Leiterplatinen

3.1 Konstruktion von minimalen Spannbäumen

Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan):

- "blaue" Regel
- "rote" Regel

Satz 101

Sei G = (V, E) ein zusammenhängender ungerichteter Graph, $w: E \to \mathbb{R}$ eine Gewichtsfunktion, $C = (V_1, V_2)$ ein Schnitt (d.h. $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, $V_1 \neq \emptyset \neq V_2$). Sei weiter $E_C = E \cap (V_1 \times V_2)$ die Menge der Kanten "über den Schnitt hinweg". Dann gilt: (",blaue" Regel)

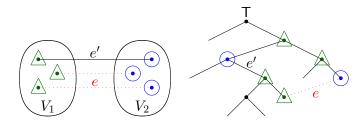
- Ist $e \in E_C$ die einzige Kante minimalen Gewichts (über alle Kanten in E_C), dann ist e in jedem minimalen Spannbaum für (G,w) enthalten.
- 2 Hat $e \in E_C$ minimales Gewicht (über alle Kanten in E_C), dann gibt es einen minimalen Spannbaum von (G, w), der eenthält.

Beweis:

[durch Widerspruch]

• Sei T ein minimaler Spannbaum von (G, w), sei $e \in E_C$ die minimale Kante. Annahme: $e \notin T$. Da T Spannbaum $\Rightarrow T \cap E_C \neq \emptyset$. Sei $T \cap E_C = \{e_1, e_2, \dots, e_k\}, k \geq 1$. Dann enthält $T \cup \{e\}$ einen eindeutig bestimmten Kreis (den sogenannten durch ebzgl. T bestimmten Fundamentalkreis). Dieser Kreis muss mindestens eine Kante $\in E_C \cap T$ enthalten, da die beiden Endpunkte von e auf verschiedenen Seiten des Schnitts Cliegen.

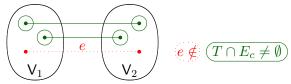
Beweis (Forts.):



Sei $e' \in E_C \cap T$. Dann gilt nach Voraussetzung w(e') > w(e). Also ist $T' := T - \{e'\} \cup \{e\}$ ein Spannbaum von G, der echt kleineres Gewicht als T hat, Widerspruch zu "T ist minimaler Spannbaum".

Beweis (Forts.):

2 Sei $e \in E_C$ minimal. Annahme: e kommt in keinem minimalen Spannbaum vor. Sei T ein beliebiger minimaler Spannbaum von (G, w).



 $e \notin T \cap E_C \neq \emptyset$. Sei $e' \in E_C \cap T$ eine Kante auf dem durch ebezüglich T erzeugten Fundamentalkreis. Dann ist $T' = T - \{e'\} \cup \{e\}$ wieder ein Spannbaum von G, und es ist $w(T') \leq w(T)$. Also ist T' minimaler Spannbaum und $e \in T'$.

Satz 102

Sei G=(V,E) ein ungerichteter, gewichteter, zusammenhängender Graph mit Gewichtsfunktion $w:E\to\mathbb{R}$. Dann gilt: ("rote" Regel)

- Gibt es zu $e \in E$ einen Kreis C in G, der e enthält und w(e) > w(e') für alle $e' \in C \setminus \{e\}$ erfüllt, dann kommt e in keinem minimalen Spannbaum vor.
- ② Ist $C_1=e_1,\ldots,e_k$ ein Kreis in G und $w(e_i)=\max\{w(e_j);\ 1\leq j\leq k\}$, dann gibt es einen minimalen Spannbaum, der e_i nicht enthält.

Beweis:

 \bullet Nehmen wir an, dass es einen minimalen Spannbaum T gibt, $der e = \{v_1, v_2\}$ enthält. Wenn wir e aus T entfernen, so zerfällt T in zwei nicht zusammenhängende Teilbäume T_1 und T_2 mit $v_i \in T_i$, i = 1, 2. Da aber e auf einem Kreis in G liegt, muss es einen Weg von v_1 nach v_2 geben, der e nicht benützt. Mithin gibt es eine Kante $\hat{e} \neq e$ auf diesem Weg, die einen Knoten in T_1 mit T_2 verbindet. Verbinden wir T_1 und T_2 entlang \hat{e} , so erhalten wir einen von T verschiedenen Spannbaum \hat{T} . Wegen $w(\hat{e}) < w(e)$ folgt $w(\hat{T}) < w(T)$, im Widerspruch zur Minimalität von T.

Beweis (Forts.):

2 Wir nehmen an, e_i liege in jedem minimalen Spannbaum (MSB) von G, und zeigen die Behauptung durch Widerspruch.

Sei T ein beliebiger MSB von G. Entfernen wir e_i aus T, so zerfällt T in zwei nicht zusammenhängende Teilbäume T_1 und T_2 . Da e_i auf einem Kreis $C_1 = e_1, \ldots, e_k$ in G liegt, können wir wie zuvor e_i durch eine Kante e_j des Kreises C_1 ersetzen, die T_1 und T_2 verbindet. Dadurch erhalten wir einen von T verschiedenen Spannbaum \tilde{T} , der e_i nicht enthält. Da nach Voraussetzung $w(e_j) \leq w(e_i)$ gilt, folgt $w(\tilde{T}) \leq w(T)$ (und sogar $w(\tilde{T}) = w(T)$, da T nach Annahme ein MSB ist). Also ist \tilde{T} ein MSB von G, der e_i nicht enthält, im Widerspruch zur Annahme, e_i liege in jedem MSB von G.

Literatur

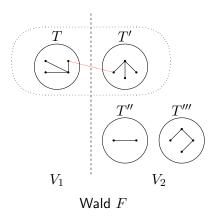
Robert E. Tarjan:

Data Structures and Network Algorithms SIAM CBMS-NSF Regional Conference Series in Applied Mathematics Bd. 44 (1983)

3.2 Generischer minimaler Spannbaum-Algorithmus

```
Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer
Knoten
(jedes v \in V bildet einen Baum)
while Wald F mehr als einen Baum enthält do
    wähle einen Baum T \in F aus
    bestimme eine leichteste Kante e = \{v, w\} aus T heraus
    sei v \in T. w \in T'
    vereinige T und T', füge e zum minimalen Spannbaum hinzu
od
```

Generischer MST-Algorithmus



3.3 Kruskal's Algorithmus

```
algorithm Kruskal (G, w) :=
  sortiere die Kanten nach aufsteigendem Gewicht in eine Liste L
  initialisiere Wald F = \{T_i, i = 1, \dots, n\}, mit T_i = \{v_i\}
  MSB := \emptyset
  for i := 1 to length(L) do
       \{v, w\} := L_i
       x := \mathsf{Baum} \in F, der v enthält; co x := \mathsf{Find}(v) oc
       y := \mathsf{Baum} \in F, der w enthält; co y := \mathsf{Find}(w) oc
       if x \neq y then
            MSB:=MSB \cup \{\{v,w\}\}
            Union(x, y) co gewichtete Vereinigung oc
       fi
  od
```

3.3 Kruskal's Algorithmus

Korrektheit: Falls die Gewichte eindeutig sind $(w(\cdot))$ injektiv), folgt die Korrektheit direkt mit Hilfe der "blauen" und "roten" Regel. Ansonsten Induktion über die Anzahl |V| der Knoten:

Ind. Anfang: |V| klein: $\sqrt{\ }$

Sei
$$r \in \mathbb{R}$$
, $E_r := \{e \in E; w(e) < r\}$.

Es genügt zu zeigen:

Sei T_1, \ldots, T_k ein minimaler Spannwald für $G_r := \{V, E_r\}$ (d.h., wir betrachten nur Kanten mit Gewicht < r). Sei weiter T ein MSB von G, dann gilt die

Hilfsbehauptung: Die Knotenmenge eines jeden T_i induziert in T einen zusammenhängenden Teilbaum, dessen Kanten alle Gewicht < r haben.

Beweis der Hilfsbehauptung:

Sei $T_i =: (V_i, E_i)$. Wir müssen zeigen, dass V_i in T einen zusammenhängenden Teilbaum induziert. Seien $u, v \in V_i$ zwei Knoten, die in T_i durch eine Kante e verbunden sind. Falls der Pfad in T zwischen u und v auch Knoten $\notin V_i$ enthält (also der von V_i induzierte Teilgraph von T nicht zusammenhängend ist), dann enthält der in T durch Hinzufügen der Kante e entstehende Fundamentalkreis notwendigerweise auch Kanten aus $E \setminus E_r$ und ist damit gemäß der "roten" Regel nicht minimal! Da T_i zusammenhängend ist, folgt damit, dass je zwei Knoten aus V_i in T immer durch einen Pfad verbunden sind, der nur Kanten aus E_r enthält.

Zeitkomplexität: (mit n = |V|, m = |E|)

Sortieren	$m\log m = \mathcal{O}(m\log n)$
$\mathcal{O}(m)$ Find-Operationen	$\mathcal{O}(m)$
n-1 Unions	$\mathcal{O}(n \log n)$

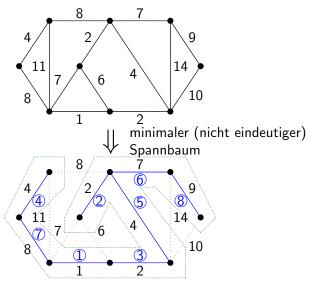
Satz 103

Kruskal's MSB-Algorithmus hat die Zeitkomplexität $\mathcal{O}((m+n)\log n)$.

Beweis:

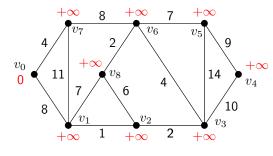
s.o.

Beispiel 104 (Kruskals Algorithmus)



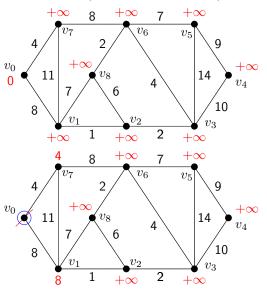
3.4 Prim's Algorithmus

```
algorithm PRIM-MSB (G, w) :=
  initialisiere Priority Queue PQ mit Knotenmenge V und
      Schlüssel +\infty. \forall v \in V
  wähle Knoten r als Wurzel (beliebig)
  Schlüssel k[r] := 0
  Vorgänger[r] := nil
  while PQ \neq \emptyset do
      u := ExtractMin(PQ)
      for alle Knoten v. die in G zu u benachbart sind do
           if v \in PQ and w(\{u,v\}) < k[v] then
               Vorgänger[v] := u
               k[v] := w(\{u, v\})
           fi
      od
  od
```

Ausgangszustand:

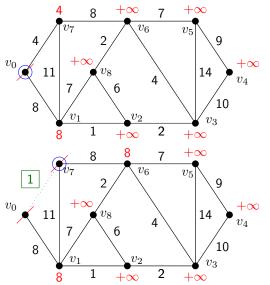
alle Schlüssel $= +\infty$ aktueller Knoten u: () Startknoten: $r \ (= v_0)$



Ausgangszustand:

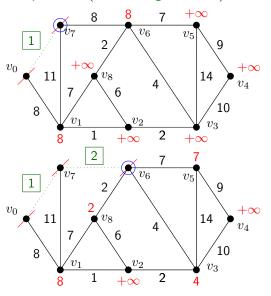
alle Schlüssel $= +\infty$ aktueller Knoten u: (\bullet) Startknoten: $r = v_0$

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_1 = 8, v_7 = 4)$



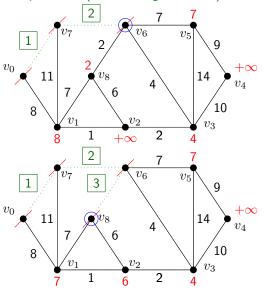
suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_1 = 8, v_7 = 4)$

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_6 = 8)$



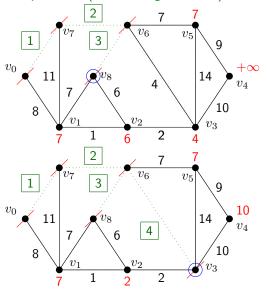
 $\begin{array}{lll} \text{suche } u := \operatorname{FindMin}(PQ) \\ \text{und entferne } u \text{ aus } PQ \\ \text{setze Schlüssel der Nachbarn in } PQ \text{ mit} \\ \text{w}(\{u,v\}) < \operatorname{Schlüssel}[v] \\ (v_6 = 8) \end{array}$

 $\begin{array}{ll} \text{suche } u := \operatorname{FindMin}(PQ) \\ \text{und entferne } u \text{ aus } PQ \\ \text{setze Schlüssel der Nachbarn in } PQ \text{ mit} \\ \text{w}(\{u,v\}) < \operatorname{Schlüssel}[v] \\ (v_3 = 4, v_5 = 7, v_8 = 2) \end{array}$



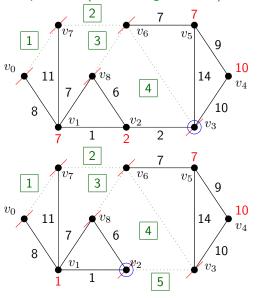
suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_3 = 4, v_5 = 7, v_8 = 2)$

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_1 = 7, v_2 = 6)$



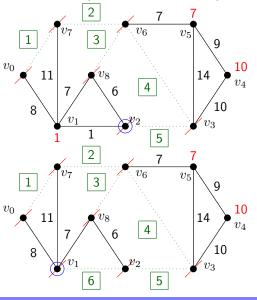
suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_1 = 7, v_2 = 6)$

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_2 = 2, v_4 = 10)$



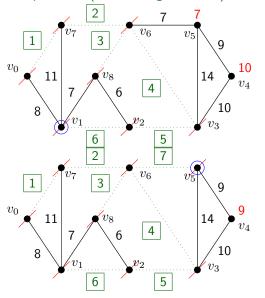
suche $u := \operatorname{FindMin}(PQ)$ und entferne u aus PQ setze Schlüssel der Nachbarn in PQ mit $\operatorname{w}(\{u,v\}) < \operatorname{Schlüssel}[v]$: $(v_2 = 2, v_4 = 10)$

suche $u:=\operatorname{FindMin}(PQ)$ und entferne u aus PQ setze Schlüssel der Nachbarn in PQ mit $\operatorname{w}(\{u,v\})<\operatorname{Schlüssel}[v]$: $(v_1=1)$



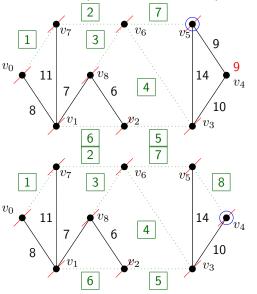
suche $u := \mathsf{FindMin}(PQ)$ und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_1 = 1)$

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: solche Nachbarn existieren nicht



suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: solche Nachbarn existieren nicht

suche u := FindMin(PQ)und entferne u aus PQsetze Schlüssel der Nachbarn in PQ mit $w(\{u,v\}) < Schlüssel[v]$: $(v_4 = 9)$



suche $u:=\operatorname{FindMin}(PQ)$ und entferne u aus PQ setze Schlüssel der Nachbarn in PQ mit $\operatorname{w}(\{u,v\})<\operatorname{Schlüssel}[v]$: $(v_4=9)$

Endzustand:

suche $u:=\operatorname{FindMin}(PQ)$ und entferne u aus PQ, damit ist PQ leer und der Algorithmus beendet

Korrektheit: ist klar.

Zeitkomplexität:

- n ExtractMin
- $\mathcal{O}(m)$ sonstige Operationen inclusive *DecreaseKey*

Implementierung der Priority Queue mittels Fibonacci-Heaps:

Initialisierung	$\mathcal{O}(n)$
ExtractMins	$\mathcal{O}(n\log n) (\leq n \text{ Stück})$
DecreaseKeys	$\mathcal{O}(m) (\leq m \; St \ddot{u} c k)$
Sonstiger Overhead	$\mathcal{O}(m)$

Satz 106

Sei G=(V,E) ein ungerichteter Graph (zusammenhängend, einfach) mit Kantengewichten w. Prim's Algorithmus berechnet, wenn mit Fibonacci-Heaps implementiert, einen minimalen Spannbaum von (G,w) in Zeit $\mathcal{O}(m+n\log n)$ (wobei $n=|V|,\ m=|E|$). Dies ist für $m=\Omega(n\log n)$ asymptotisch optimal.

Beweis:

S.O.

